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Abstract

We study a continuous-time model of partnership with persistence and imperfect

state monitoring. Partners exert private efforts to shape the stock of fundamentals,

which drives the profits of the partnership, and the profits are the only public

signal. The near-optimal strongly symmetric equilibria are characterized by a novel

differential equation that describes the supremum of equilibrium incentives for any

level of relational capital. Under (almost) perfect monitoring of the fundamentals,

the only equilibria are (approximately) stationary Markov. Imperfect monitoring

helps sustain relational incentives and increases the partnership’s value by extending

the relevant time horizon for incentive provision. The results are consistent with the

predominance of partnerships and relational incentives in environments where effort

has long-term and qualitative impact and in which progress is hard to measure.
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1 Introduction

Partnerships are among the main forms of organizing joint economic activity. Character-

ized by common ownership, which ties the partners in an ongoing, long-term relationship,

partnerships are common among individuals, businesses, and constitute one of the domi-

nant forms of structuring a firm—along with corporations and limited liability companies.

As any organization, partnerships face an incentive problem of motivating members to

exert effort and, hence, to contribute to its success.

The ongoing, dynamic nature of partnerships complicates the incentive problem. To

fix ideas, consider a start-up. On a daily basis, each partner devotes her effort to im-

proving the venture’s fundamentals: upgrading the quality of the product; broadening

the customer base; facilitating access to external capital; improving the internal organi-

zation; and more. Each of these fundamentals evolves over time, affected by the partners’

efforts and by the circumstances. Moreover, none of the fundamentals needs to be di-

rectly observed by the partners, who see only how they are gradually reflected in the

shared profits, customer reviews, or internal audits. However, a long-term partnership

also offers a unique advantage: it fosters relational incentives. A partner has incentives

to work hard not only to boost profits, but also to boost observable outcomes, morale,

and, ultimately, to increase the future effort choices of her partners.

In this paper, we analyze the effect of imperfect monitoring of the fundamentals on

the provision of relational incentives in a partnership. In the continuous-time model we

consider, stochastic fundamentals are a persistent state, shaped by partners’ efforts. Our

main result is that worse monitoring of the venture delays information about partners’

efforts, which may improve the provision of relational incentives and, hence, increase the

partnership value. The results are consistent with the predominance of partnerships and

relational incentives in environments where effort has long-term and qualitative impact

and in which progress is hard to measure. On a technical side, we develop a method

to solve for near-optimal strongly symmetric equilibria of the partnership. It extends

the stochastic control techniques to a wide class of games with persistence and imperfect

state monitoring.
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In our continuous-time model, at any point in time, two partners privately choose

costly effort and evenly split the profits of their venture. Fundamentals change stochas-

tically, driven by the sum of efforts and, in turn, equal the expected profit flow. The

private marginal benefit of effort due to the direct effect on profits (Markov incentives)

is constant and equals half of the social marginal benefit of effort. This results in the

unique, stationary Markov equilibrium (Proposition 1). In the model, neither efforts

nor fundamentals are observable, and profits, which follow a Brownian diffusion, are the

partners’ only publicly available information.

Our minimal monitoring structure does not allow the signals to separately identify

each partner’s effort (Fudenberg et al. [1994]). Consequently, we focus on the strongly

symmetric equilibria (SSE) and relational incentives, with partners coordinating on rel-

atively efficient (inefficient) effort after outcomes indicative of high (low) effort.

The results in this paper rely on the fact that the persistent effect of effort combined

with the imperfect state monitoring lengthen the time horizon for incentive provision. If

the current profits depend only on current efforts—in the i.i.d., repeated game setting—

or if fundamentals are perfectly monitored—in a stochastic game setting—the rewards

must be provided instantaneously. Increased effort brings about unexpectedly high profits

(the signals that partners rely on) only in the same period, with fundamentals updated

instantly in the next. Outside of those limiting environments, signals indicating increased

effort today are spread over time. Poor monitoring results in slow learning about the

fundamentals, and relatively more information coming in late.

The longer time horizon for incentive provision may, in turn, facilitate the provision of

relational incentives. The reason is that relational rewards must take a form of a promise

of improved future relationship. If the relationship is already at the bliss point, then

immediate relational rewards are unavailable. Indeed, in a Brownian diffusion model

like ours, no immediate incentives can be provided at the bliss point.1 We show that

when monitoring is (near-)perfect and horizon for incentives short, relational incentives

(nearly) unravel (Proposition 4). However, with poor monitoring partners work at a bliss

1Sannikov and Skrzypacz [2007] show that the impossibility persists in discrete-time models with
short period lengths.
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point not for immediate rewards, but to invest in good outcomes and in an improved

relationship in the future.

The benefit of poor monitoring on relational incentives and partnerships has implica-

tions for the structure of a firm in different informational environments. Poor monitoring

always hurts the provision of incentives, if employees are rewarded either by better rep-

utation and competitive wage (career concerns, Holmström [1999]), or by contracts that

provide performance-based payments. In the first case, poor monitoring delays the ar-

rival of reputational rewards, while with contracts it increases information asymmetry

and the cost of providing incentives. A cross-sectional implication is that partnerships

are favored and, hence, more prevalent, in environments in which the effects of effort are

hard to measure or quantify. Moreover, performance data becoming better and cheaper

is more advantageous to corporations and other organizations that rely on incentives that

are based on pecuniary rewards.

Finally, relational incentives are hurt when fundamentals are more stochastic, or when

there is more uncertainty about the stochastic quality of the venture, as in the case of

young enterprises (Proposition 5). While young ventures may provide incentives based on

the manipulation of public beliefs, either about oneself (career concerns) or the productiv-

ity of the venture (e.g., encouragement effect, Bolton and Harris [1999]), more established

ones must rely on relational incentives and, hence, on the mechanism described in this

paper. We show that an established partnership may unravel as a consequence of a short

spat of bad outcomes, with hardly any effect on its expected productivity or profitability,

or quality of the partners (Corollary 2, “Beatles’ Break-up”.)

To analyze relational incentives in a setting with persistence and imperfect state mon-

itoring, we develop a novel method. It is based on characterizing the upper boundary of

relational incentives achievable in a local SSE, under only local incentive constraints, as a

function of expected value of future efforts (relational capital, an equivalent of continua-

tion value in an i.i.d. setting). Theorem 1 shows that the boundary of incentives satisfies

an appropriate ordinary differential HJB equation and provides boundary conditions. The

right-most argument characterizes the optimal relational capital and partnership’s value.
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Theorem 2 shows, roughly, that a modified boundary is self-generating (as in [Abreu

et al., 1990]) and defines a near-optimal local SSE. It is a convenient tool for analyzing

the dynamics of effort (Section 3.2 discusses “rallying” and “coasting” in a partnership).

The novel approach of maximizing incentives as a function of value, rather than vice-

versa, requires extending the stochastic control methods. It results in the law of motion

of the relational capital (state variable) depending on the level of the objective function

(incentives), via the effort chosen. This dependence is not allowed in stochastic control,

yet we verify that the HJB characterization of the boundary is valid.2 Another difficulty

is familiar: In Theorem 3, we provide conditions on the primitives so that the constructed

strategies are not only locally, but fully incentive-compatible. Finally, to highlight the

portability of our method, we provide a general model and the HJB characterization

(Appendix C) and discuss application to models of capital accumulation, oligopoly, and

team production with asymmetric players (Appendix C.1).

1.1 Related Literature

This paper belongs to the literature on free-riding in groups, in dynamic environments.3

The repeated partnership game was first studied by Radner [1985] and Radner et al.

[1986], who demonstrate inefficiency of equilibria, and by Fudenberg et al. [1994], who

pin down the identifiability conditions violated in the model. While symmetric equilibria

feature a “bang-bang” property (Abreu et al. [1986]), in our case signals about effort

accrue slowly over time and result in gradual equilibrium dynamics.

Abreu et al. [1991], Sannikov and Skrzypacz [2007, 2010] show how frequent inter-

actions may have a detrimental effect on incentives. In particular, the discrete-time ap-

proximation of a Brownian model of partnership or collusion in Sannikov and Skrzypacz

[2007], which has either no persistence or a perfectly monitored state, has no relational

2Relatedly, the results in Sannikov [2007] and Faingold and Sannikov [2020] extend stochastic control
results to settings in which the law of motion of state variables depends not on the level, but on the
derivative of the value function.

3See Olson [1971], Alchian and Demsetz [1972], Holmstrom [1982], as well as Legros and Matthews
[1993] and Winter [2004] for seminal contributions in static settings.
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incentives.4 Faingold and Sannikov [2011] and Bohren [2018] establish related results

with one long-lived player in a competitive market setting. We show that the impossibil-

ity is not inherent to continuous-time modeling, but is a consequence of the monitoring

structure instead.5 Rahman [2014] shows how relational incentives may be restored in

the presence of a mediator, using secret monitoring and infrequent coordination.

Our paper ties into the literatures on career concerns (see Holmström [1999] and Cis-

ternas [2017]) and on experimentation in teams (see Bolton and Harris [1999], Georgiadis

[2014], and Cetemen et al. [2017] for Brownian models like ours).6 In career concerns

models, equilibrium play depends only on beliefs about an exogenous state;7 the liter-

ature on experimentation in teams studies effects of payoff or information externalities

on incentives and focuses on Markov equilibria as well, with no relational component.

Our paper is complementary: It has production technology independent of history (as in

Holmström [1999]), with constant Markov incentives, but we focus on optimal equilibria,

which rely on relational incentives. Our equilibrium characterization is equally tractable,

with incentives driven by the endogenous relational capital of the partnership.8

Persistence plays an important role in dynamic contracting models with learning (see

Jarque [2010], Williams [2011], Prat and Jovanovic [2014], Sannikov [2014], Prat [2015],

DeMarzo and Sannikov [2016], and He et al. [2017] for Brownian models like ours). Al-

though the questions and the incentive mechanisms are different from ours, the literature

has long recognized the difficulty of accounting for the marginal benefits of deviations,

or incentives, and of verifying global incentive compatibility. Our solution method for a

game setting, in which every player requires incentives, is new and is based on maximizing

4See, also, Sadzik and Stacchetti [2015] for the discrete-time approximation of the Brownian Principal-
Agent, rather than partnership model.

5Quick learning and ratchet effect also prevents nontrivial effort in Bhaskar [2014], but for entirely
different reasons. There, impossibility relies on a setting that combines continuous and discrete choices.

6See, among others, Keller et al. [2005], Keller and Rady [2010], Klein and Rady [2011], and Bonatti
and Hörner [2011] for experimentation in teams with exponential bandit models. See, also, Décamps
and Mariotti [2004], Rosenberg et al. [2007], Murto and Välimäki [2011], and Hopenhayn and Squintani
[2011] for related stopping games with incomplete information.

7Specifically, Cisternas [2017] provides a differential equation also for the stock of incentives, just as
in this paper, but in a differentiable Markov equilibrium, as a function of public beliefs about the state.

8In our near-optimal equilibria, working to rally the partnership is related to the encouragement effect
identified by Bolton and Harris [1999], and coasting is reminiscent of the work-shirk-work dynamics in
the reputation model of Board and Meyer-ter Vehn [2013].
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incentives, rather than on including them as an additional state variable. Moreover, we

provide conditions on the primitives of the model (in our case, the convexity of costs), so

that the solution of the relaxed problem is fully incentive-compatible (see Edmans et al.

[2012] and Cisternas [2017] for related results).9

Finally, we interpret our results as providing a rationale for the prevalence of part-

nerships in industries with poor monitoring of the venture’s progress. In particular,

as documented by Von Nordenflycht [2010], “opaque” quality is a key characteristic of

the knowledge-intensive environment of the professional sector, where partnerships are

prevalent.10 Our results are related to Levin and Tadelis [2005], who rely on partnership’s

comparative advantage in industries where employee quality is hard to evaluate, and to

Morrison and Wilhelm [2004], who focus on partnership’s impact on fostering mentorship

relations.

2 Model

Two partners, who are risk-neutral and discount the future at a rate r > 0, play the

the following infinite horizon game. At every moment in time, t ≥ 0, each partner i

chooses effort ait from an interval [0, A].11 Time t total effort contributes to the stock

of fundamentals of the partnership, µt, which depreciates over time at a constant rate

α > 0. At any point in time, stock of fundamentals is the mean of the partnership flow

profits dYt,

dµt = (r + α) (a1
t + a2

t )dt− αµtdt+ σµdB
µ
t , (1)

dYt = µtdt+ σY dB
Y
t ,

9See, also, Williams [2011], Sannikov [2014], and Prat [2015], who provide analytical conditions on
the solution of the relaxed problem, under which the first-order approach is valid.

10See Empson [2001] and Broschak [2004] for further references.
11The upper bound on effort is used to guarantee boundedness of continuation value in Propositions

2 and 4, part iii). In all simulations, as well as in Theorem 3, the bound A is large enough so that
equilibrium efforts are interior. Lemma 3 in Appendix A.4 bounds the relational incentives and, so, the
efforts in a near-optimal equilibrium.
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where {Bµ
t } and

{
BY
t

}
are two independent Brownian Motions.12 The multiplicative

constant, r + α, normalizes the total productivity of effort to one, regardless of the

depreciation rate of the fundamentals or of the discount rate.13 Finally, profits are the

only publicly observable signal.

Exerting effort a entails a private flow cost c (a), where c(·) is a twice differentiable,

strictly convex cost of effort function. We normalize c(0) = 0 and c′(0) = 1
2

(see Propo-

sition 1), and in some of the results we further restrict the cost function to be quadratic

(see Section 3.2). Finally, at each point in time, partners split the profits evenly. Thus,

for fixed effort choices of both partners, a player’s continuation payoffs are given by

W i
τ = E{a

1
t ,a

2
t }

τ

[∫ ∞
τ

e−r(t−τ)
(µt

2
− c(ait)

)
dt

]
.

The partnership model has three features that go beyond the classic repeated-game

framework: effort has persistent effect, state is imperfectly monitored, and partners keep

on learning about the fundamentals. Specifically, fundamentals, which are the state

variable in the game, change only gradually over time driven by the efforts of the partners.

Persistence of fundamentals implies that actions have a persistent effect: total effort today

adds to the fundamentals, and also to the profit flow, at any later time,

µτ = e−ατµ0 +

∫ τ

0
e−α(τ−t)(r + α)

(
a1
t + a2

t

)
dt+ σµB

µ
τ .

Secondly, fundamentals need not be observed by the partners, who observe only noisy

profit signals. Together with persistence, this implies that all future profits are useful

signals of current efforts (see Proposition 2). Thirdly, fundamentals need not be deter-

mined by the efforts, and are changing stochastically. Alternatively, fundamentals are

a sum of two terms: one that depends entirely on the past efforts of the partners, and

12Unless specified explicitly, all processes in this paper are indexed by t ≥ 0.
13The constant is analogous to 1 − δ, which scales the stage game payoffs in repeated game analy-

sis, where δ is the discount factor. The only results in which the normalization plays a role are the
comparative statics in Propositions 3, in which we show that equilibria with a nontrivial level of effort
exist as r + α + γ converges to zero—even as the marginal benefit of effort on fundamentals, r + α,
disappears—and no effort is exerted in any equilibrium as r + α + γ converges to infinity—even as the
effect of effort on fundamentals gets arbitrarily high.

Intuitively, dropping the normalization would make the results easier. Formally, both results continue
to hold without the normalization, as we verify at the end of each proof, in Appendix A.3.

8



the other that is purely stochastic, and reflects an unknown quality of the partnership.

Consequently, in equilibrium partners do not know and keep on learning about the fun-

damentals, or the quality of the partnership (in the spirit of career concern literature, see

Holmström [1999]).

The three features are parametrized in the model by α, σY , σµ ≥ 0.14 Their impact

on the incentive provision in a partnership is one of the central themes of the paper, and

we discuss it at length in the following sections.

Public Beliefs Let µτ = E{a
1
t ,a

2
t }

τ [µτ ] denote the public expected level of fundamentals

at time τ , given efforts {a1
t , a

2
t}. A simple application of the Kalman-Bucy filter yields

that µt follows

dµt = (r + α) (a1
t + a2

t )dt− αµtdt+ γt[dYt − µtdt], (2)

for an appropriate gain parameter γt, dYt = µtdt+σY dBt, and a Brownian Motion {Bt}.
We assume that, initially, partners believe that µ0 is Normally distributed with steady-

state variance σ2 (we relax this assumption in Appendix C.1). This implies that both

the posterior estimate variance σ2
t and the gain parameter γt remain constant throughout

the game and equal (see Liptser and Shiryaev [2013])

γ =

√
α2 +

σ2
µ

σ2
Y

− α, and σ2 = γ × σ2
Y . (3)

2.1 Equilibrium

A player’s (pure, public) strategy {ait} is a process that depends on the public information

{Yt} and allows for public randomization. A pair of public strategies, {a1
t , a

2
t} , is a Perfect

Public Equilibrium (PPE) if, for each partner i at any time τ ≥ 0,

E{a
i
t,a
−i
t }

τ

[∫ ∞
τ

e−r(t−τ)
(µt

2
− c(ait)

)
dt

]
≥ E{ã

i
t,a
−i
t }

τ

[∫ ∞
τ

e−r(t−τ)
(µt

2
− c(ãit)

)
dt

]
, (4)

14We require that either σY or σµ is strictly positive, to avoid the familiar complications in defining a
continuous-time strategy in a game with perfect monitoring.

9



following any history, for any possible alternative strategy {ãit}.15 We note that a public

strategy does not restrict a partner to condition only on the public expectation µτ , or

to revert to the equilibrium path immediately after a deviation. Indeed, establishing

conditions under which “double deviations” are not optimal is one of the main technical

results in the paper (see Theorem 3).

Markov Equilibria In a stochastic game, one often restricts attention to Markov

Equilibria, in which play depends on the past history only via the minimal set of payoff-

relevant parameters16. The following result shows that our game has a unique Markov

equilibrium, and it exhibits constant effort by the partners.

Proposition 1 A pair of constant strategies {at, at} in which partners never exert effort,

at = 0, for every t ≥ 0, constitutes a PPE. It is the unique stationary PPE, and so it is

the unique Markov equilibrium.

The argument is as follows. Exploiting the exponential decay of the fundamentals,

for any PPE strategy profile, we may rewrite the continuation payoffs by additively

separating the impact that past actions and future actions have on future profits. This

gives us

W i
τ = E{a

1
t ,a

2
t }

τ

[∫ ∞
τ

e−r(t−τ)

(
µτ
2
e−α(t−τ) +

∫ t

τ
(α+ r)

a1
s + a2

s

2
e−α(t−s)ds− c(ait)

)
dt

]
(5)

=
1

2 (r + α)
E{a

1
t ,a

2
t}

τ [µτ ] + E{a
1
t ,a

2
t}

τ

[∫ ∞
τ

e−r(t−τ)

(
a1
t + a2

t

2
− c(ait)

)
dt

]
.

The first term in the last line of (5) captures the expected value of inherited fun-

damentals to a partner. Even if at some time τ partners stop exerting effort, they will

keep collecting partnership profits. The “inherited” (expected) fundamentals µτ may be

positive due to past effort or luck—high quality of the partnership—and are expected

15In our Gaussian setting a mixed action at any time generates the same effect on the state variable
and the same public signal as its expectation. As it is strictly costlier, it is never optimal. Moreover, as
players have no private signals in the game, any pure strategy is public.

16See Maskin and Tirole [2001] and Mailath et al. [2006] for the formal definition of Markov Equilib-
rium.
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to slowly revert to zero, yielding expected profits all along. The second term is the

forward-looking value of efforts undertaken in the future.

Crucially, due to the additive separation of the continuation value in (5), the incentives

for effort do not depend on the (expected) level of fundamentals (see Holmström [1999]).

Partners do not work to invest in a better production technology, as both the marginal

effect of effort on fundamentals, (r + α) dt, as well as the marginal value of an extra

unit of fundamentals, 1
2(r+α)

, are constant. Thus, the effort aM in the unique Markov

equilibrium is constant, with marginal cost one half.

Our assumptions on the cost of effort normalize both the level of effort, as well as the

expected future value of the partnership in the Markov equilibrium, to zero. We say that

a partnership unravels if, from that point on, partners exert no more effort—that is, they

play the Markov equilibrium.

We highlight that the Markov equilibrium is inefficient. As partner’s effort benefits

the two partners equally, the marginal social benefit of effort is twice higher. The socially

efficient level of effort, aEF , is constant, with marginal cost one.

Strongly Symmetric Equilibria The provision of relational incentives is hindered

by the parsimonious information structure of the partnership game. The only information

about the partners’ efforts comes from the stream of profits. As both partners’ efforts

enter profits additively, it is not possible to identify which of the partners did, and which

one did not, contribute to the common good (Fudenberg et al. [1994]). Thus, as in

the classic analysis of repeated duopoly by Green and Porter [1984] or of partnerships by

Radner et al. [1986], it is not possible to provide incentives by “transferring” continuation

value between the agents, shifting resources from likely deviators. Moreover, asymmetric

play is inefficient since the cost of effort is convex, and it does not affect the signals’

informativeness of efforts.

Therefore, we concentrate throughout the paper on equilibria in which players choose

symmetric strategies, conditioning the provision of effort on the public history available

to them in the same way. Formally, a Strongly Symmetric Equilibrium (SSE) is a PPE

11



in which the strategies {a1
t , a

2
t} satisfy a1

τ ≡ a2
τ , after every public history in Ft.

Accounting of Incentives and Local Strongly Symmetric Equilibria In this

section, we define non-Markovian, relational incentives that can bridge part of the gap to

the efficient level, and that we analyze in the rest of the paper. Towards that goal, first,

define relational capital wτ as the expected discounted payoff from future efforts, or the

continuation value net of the expected value of the current fundamentals,

wτ := Wτ −
1

2 (r + α)
E{a

1
t ,a

2
t}

τ [µτ ] = E{at,at}τ

[∫ ∞
τ

e−r(t−τ) (at − c(at)) dt
]
. (6)

Relational incentives are constructed by conditioning future play, and so relational

capital, on public signals. Specifically, when a partner increases effort, future high profit

outcomes become more likely. For fixed strategies of the partners, this changes the

probability distribution of efforts in the future. We define relational incentive Fτ as the

marginal benefit of effort net of Markov incentives, or, equivalently, as the marginal effect

of effort on relational capital.

Formally,

Fτ :=
∂

∂ε
E{at,at}τ

[∫ ∞
τ

e−r(t−τ) (at − c(at)) dt
]
, (7)

for revenue processes dY ε
t = µεtdt+ σY dBt, where µετ = µτ + ε (r + α) and µεt evolves as

in (2), with ε > 0.

A necessary condition for a symmetric equilibrium is that effort is locally optimal.

That is, for a level of relational incentives F ,

a(F ) = arg max
a
{(F + 1/2)× a− c(a)} . (8)

A local Strongly Symmetric Equilibrium (local SSE) is a profile of symmetric strategies

such that, following any history, actions are locally optimal, aτ = a(Fτ ), for the function

a(·) defined in (8), and Fτ as in (7).
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3 Solution

3.1 Payoffs

We begin to solve our partnership game by characterizing the set of relational capitals,

and hence payoffs, that can be achieved by the partners in a local strongly symmetric

equilibrium. Towards that goal, the following proposition shows how relational capital

and relational incentives must evolve in a local SSE. In this section, fundamentals can be

deterministically determined by past efforts or stochastic, σµ ≥ 0, but they are imperfectly

monitored, σY > 0.

Proposition 2 A symmetric strategy profile {at, at} with relational capital and relational

incentives processes {wt} and {Ft} is a local SSE if and only if there are L2 processes

{It}, {Jt} such that

dwt = (rwt − (at − c(at))) dt+ It × (dYt − µtdt) + dMw
t , (9)

dFt = (r + α+ γ)Ftdt− (r + α) Itdt+ Jt × (dYt − µtdt) + dMF
t ,

and actions satisfy at = a(Ft), where {Mw
t } and {Mw

t } are martingales orthogonal to

{Yt}, and the transversality conditions E [e−rtwt] ,E
[
e−(r+α+γ)tFt

]
→t→∞ 0 hold.

The first equation in the Proposition is a version of the standard “promise keeping”

accounting for the continuation value (see Sannikov [2007]). If the current flow of rela-

tional capital is lower than the average promised flow, then the relational capital must

deterministically increase in the next period, and vice versa. Moreover, relational capital

also changes stochastically in response to the unexpected profit realizations, with linear

sensitivity It. The martingale processes capture the possibility of public randomization.

The second equation means that relational incentives equal the expected discounted

integral of the stream of future sensitivities (r + α) It (see, also, Prat and Jovanovic

[2014], Sannikov [2014], and Prat [2015]),

Fτ = E{at,at}τ

[∫ ∞
τ

e−(r+α+γ)(t−τ) (r + α) Itdt

]
. (10)
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A key intuition behind the equation is that a deviation to a higher effort today results in

the partnership’s fundamentals above the publicly expected level of fundamentals not only

now, but throughout the future. This means unexpectedly good news—profits higher than

expected—which keep pushing relational capital up (when sensitivities It are positive, see

Equation 9).

After a deviating effort, the wedge between the private and public expectation of the

fundamentals reverts to zero gradually, at a rate α + γ. The first term is the exogenous

rate of decay of the fundamentals. It is the rate at which the effect of current effect on

fundamentals wears off. The second term is the endogenous speed of learning from profits

about the fundamentals (see Equation (2)). For instance, an off-equilibrium increase in

effort leads to an unexpectedly high stream of profits. Upon observing it, the public

attributes part of the higher profits to a permanent change in partnership’s quality (due

to quality being stochastic) and part of it to transient luck this period (due to imperfect

monitoring). The first effect is incorporated into higher expectation of fundamentals, and

hence to future expectations of profits. Hence, as the stream of higher-than-expected

profits realizes, the wedge between the private and public expectation shrinks.

One way to think about the effect of learning is that, following an off-equilibrium

increase in effort, the realized higher-than-expected profits are gradually misattributed to

a permanent exogenous change in partnership’s quality (in similar fashion as Holmström

[1999]). Note also that when fundamentals are deterministic, σµ = 0, partners do not

learn in equilibrium, γ = 0. We discuss the effect of learning on relational incentives in

more detail in Section 4.1.

We now state one of the main results of the paper, characterizing the supremum

continuation value in a partnership. Recall that it equals the supremum relational capital,

plus the the value of the inherited fundamentals (see Equation 6).

Theorem 1 Let w∗ be the supremum of the relational capitals achievable in a local SSE.

The upper boundary of relational incentives achievable in a local SSE is concave and
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satisfies the differential equation

(r + α+ γ)F (w) = max
I

{
(r + α)I + F ′(w) (rw − [a(F (w))− c(a(F (w)))]) +

F ′′(w)σ2
Y

2
I2

}
= F ′(w) (rw − [a(F (w))− c(a(F (w)))])− (r + α)2

2σ2
Y F
′′(w)

, (11)

on [0, w∗), as well as the boundary conditions

F (0) = 0,

lim
w↑w∗

{
(r + α+ γ)F (w)− F ′(w) (rw − [a(F (w))− c(a(F (w)))])

}
= 0, (12)

lim
w↑w
{rw − [a(F (w))− c(a(F (w)))]} = 0.

Moreover, w∗ is not attained by any local SSE.

Theorem 1 provides a characterization in form of an HJB equation of the upper

boundary of relational incentives achievable in a local SSE. We explain why the result

is not an application of standard dynamic programming techniques, and the difficulties

involved in the proof, in Section 5. The main value of the result is as a tool to compute the

supremum w∗ of relational capitals achievable in a local SSE, as the right-most argument

of a function that solves this system.

In the first line of Equation (11), the left-hand side is the average flow of relational

incentives needed to generate the stock of relational incentives F (w), given the exponen-

tial discounting, mean reversion, and learning. On the right-hand side, the first term in

brackets captures the flow of relational incentives; the second term captures the change

in the relational incentives resulting from the drift in relational capital; and the last

term captures the loss (since the boundary is concave) resulting from the second-order

variation in relational capital.

The first boundary condition in (12) says that the relational incentives in any local

SSE with no relational capital must be zero—just as in the Markov equilibrium.17 The

17The result follows from our assumption that the Markov equilibrium effort 0 is also the lowest
available effort. Allowing negative efforts and, thus, efforts below the Markov level, will allow players to
“burn more value” in equilibrium and might help enlarge the set of SSE. Formally, with negative effort,
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following two equations show that, close to the right end of the boundary, both the drift

and the volatility of relational capital die out.18

The theorem also shows that the supremum relational capital is not attainable, and so

an optimal local SSE does not exist. This follows from the last two boundary conditions

in (12), which imply that the supremum relational capital would have to be the outcome

of a stationary—and, hence, Markov—equilibrium.

Existence of non-trivial equilibrium and the discounting of incentives Re-

lational incentives are discounted at a rate r + α + γ. The next proposition establishes

that the characterization above is not vacuous, and nontrivial local SSE exist exactly

when this “discount rate” is low.19 In order to simplify the construction of equilibria, for

the remaining results we assume that the cost of effort is quadratic:20

(Quadratic Cost) c(a) =
1

2
a+

C

2
a2. (13)

Proposition 3 Fix the ratio r+α+γ
r

. i) The supremum w∗ of relational capitals achievable

in a local SSE is strictly positive when r + α + γ is sufficiently small.

ii) In contrast, if r + α + γ is sufficiently large, then the supremum w∗ of relational

capitals achievable in local SSE is arbitrarily close to zero.

The “discount rate” r+α+γ determines the time horizon for the provision of incentives

(see Proposition 2). To motivate today’s effort when the rate is high, high profit outcomes

must be rewarded soon—either because partners do not care much about the future, the

the differential equation (11) and the right boundary conditions in Theorem 1 would not change, but the
left boundary condition w ≤ 0 would become free. (It is easy to establish that just as (0, 0), the point
(w,F (w)) must belong to the set of pairs (w,F ) with zero drift.)

18Positive drift or volatility would lead to an escape beyond the right end. Also, if the drift were
strictly negative, one could generate relational capital above w∗ simply by letting it drift down.

19Formula 24 in Appendix A.3 provides precise sufficient conditions on the parameters that guarantee
existence of local SSE; in the proof of Theorem 3 we provide conditions for global incentive compatibility.

20Quadratic costs greatly simplify deriving the bounds in Proposition 3, and in Theorems 2 and 3,
but we are confident that the result can be extended to more general cost functions, with appropriate
bounds on third derivatives.
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effect of effort on profits wears off quickly, or the effect is quickly attributed to a change

in partnership’s quality.

Relational incentives die out when the “discount rate” is high enough for the following

two reasons. The first reason is specific to relational incentives: at the bliss point of

highest relational capital, partners cannot be rewarded for high profit outcomes. This

is because rewards must be meted out in increased relational capital, and this is not

available at the bliss point (relational capital is already at the highest). The second

reason relies on the “short periods”, with signals coming in continuously and hence with

small precision. With poor quality of signals, instant incentives require both punishments

and rewards—for bad and good signals, respectively (see Abreu et al. [1991] and Sannikov

and Skrzypacz [2007, 2010]). Intuitively, with imprecise signals, rewards and punishments

are used incorrectly very often, and so both are needed for the two errors to cancel out.21

It follows that, if the time horizon for incentive provision is short, then the partners

cannot be incentivized to exert effort at the bliss point. The construction of relational

incentives essentially unravels.22

In contrast, with low “discount rate” on incentives, nontrivial relational incentives

are possible. In an equilibrium, good profit outcomes are always rewarded, when the

relational capital of the partnership is in the workaday interior ranges. Hence, upon

reaching the bliss point, partners exert effort because it will be rewarded later, once the

relational capital drifts down. Waiting does not destroy much of the incentives since the

discounting is low.

3.2 Strategies and Equilibrium Dynamics

In the next result, we construct near-optimal local SSE. To guarantee existence, we

restrict attention to a class of local SSE, with sensitivities It of relational capital with

21In the continuous-time Gaussian setting, the incentives have even more structure: not only both
rewards and punishments must be used, but relational capital must be linear in the Gaussian signal; see
Proof in Appendix A.3.

22Relational capital at a bliss point must be low, because it is a weighted average between the current
benefit—close to zero, when efforts are low—and the future relational capital, which can only be lower.
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respect to profit flow either zero or above ε, for ε > 0.23 A local SSE is called ε-optimal

if it belongs to such class and gives rise to relational capital close to the supremum.24

Theorem 2 For ε > 0, let w∗ε be the supremum of relational capitals achievable in a

local SSE with sensitivities It of relational capital with respect to profit flow either zero

or above ε. The upper boundary of relational incentives achievable in a local SSE under

this constraint is concave and satisfies the differential equation

(r + α+ γ)Fε(w) =

max
Iε∈{0}∪[ε,∞)

{
(r + α)Iε + F ′ε(w) (rw − [a(Fε(w))− c(a(Fε(w)))]) +

F ′′ε (w)σ2
Y

2
I2
ε

}
(14)

on [0, w∗ε), as well as the boundary conditions (12). There exists an ε-optimal local SSE

with relational capital and incentive processes {wt}, {Fε (wt)}.

The function Fε in the theorem provides a recipe for constructing near-optimal local

SSE. In Figure 1, Fε is the highest inverse parabola, which reaches furthest to the right.

At any point in time, for any value of relational capital (state), the function determines

relational incentives, and so the marginal benefit of effort. This pins down the equilibrium

effort and also the relational capital in the next instant: it drifts deterministically—say,

decreases if the flow benefits are large relative to the relational capital—but also responds

to the stochastic news about the profit flows (see (2)). The sensitivity to those news is

the one that maximizes expression (14) and, again, is pinned down by function Fε and

its second derivative. In the next instant, the game continues with updated relational

capital (as described) and beliefs about the fundamentals (see Equation 2).

We point out three qualitative features of the equilibrium dynamics. First, on the left,

23Specifically, we are looking at a subclass of the local SSE in the original game that happen to have
this property. The advantage of local SSE in this class is that, for a fixed ε > 0, they cannot run into
trouble approximating the unattainable w∗, with policies {It} positive yet arbitrarily small. This yields
self-generation of the upper boundary Fε in the following theorem.

We point out that there might be other types of approximately optimal local SSE. The class that we
chose has an additional benefit of numerical tractability; in Appendix A.4 we provide the bounds on
the first two derivatives of the functions Fε in Theorem 2. In contrast, note that the equation (11) in
Theorem 1 is not uniformly elliptic, with F ′′ arbitrarily small.

24Formally, we require the distance to the supremum to be vanishing in ε. The equilibria in the next
theorem, in particular, achieves distance of order O(ε1/3).
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This figure displays many different solutions of the differential equation (14), with the near-
optimal local SSE characterized by the curve that reaches farthest to the right. The horizontal
parabola is the locus of the feasible relational capital-incentives pairs (w,F ) that can be achieved
by symmetric play in a stage game, satisfying rw = a(F ) − c(a(F )). The efficient pair is
(200, 1/2).

Figure 1: Relational Incentives in a Near-optimal SSE

the graph of Fε starts at the Markov equilibrium point, with no relational capital and

incentives. This is an absorbing, stationary point; if partners reach it after a sequence

of bad profit outcomes, the relationship unravels, and no effort is ever taken in the

future. Second, on the right, close to the bliss point, profit outcomes hardly affect the

partnership. Once partners have established a sufficiently high level of relational capital,

it becomes relatively insensitive to the public news and slowly drifts down, away from the

boundary. Third, profit outcomes that exceed expectations are always good news for the

partnership, increasing relational capital. However, they do not always lead to greater

effort. Function Fε is concave and changes slope, and so good news increase incentives

at low levels, and decrease incentives at high levels of relational capital. This translates

into the equilibrium dynamics of effort:

Corollary 1 In a near-optimal local SSE there is a threshold level of relational capital,

w#, such that i) at relational capitals below w# high profit realizations dYt increase equi-
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librium effort (“rallying”), and ii) at relational capitals above w# high profit realizations

dYt decrease equilibrium effort (“coasting”).
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Effort and Relational Capital over time

(a) A short-lived partnership
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Effort and Relational Capital over time

(b) A long-lived partnership

Each panel displays a sample path of effort (on the left axis) and relational capital (on the right
axis) over time, starting near the supremum relational capital. The horizontal line represents
the level of relational capital at which effort is maximized. Initially players coast, and the
relational capital drifts down, undisturbed by shocks. When relational capital is above the
horizontal line, profit outcomes that increase relational capital lead players to exert less effort.
Changes in effort and relational capital are negatively correlated. When relational capital is
below the horizontal line, changes in effort and relational capital are positively correlated.

Figure 2: Effort and Relational Capital over Time

4 Information Structure and the Value of the Part-

nership

The informational environment of a partnership, in our setting, is determined by two

parameters. First, partnerships differ by how well their fundamentals are monitored, and

so how well the progress of the venture can be tracked and assessed. This is captured by

the degree of noise in the public signals, σY . Second, partnerships differ by the degree of

underlying uncertainty about the quality of the venture, or the partners. This is captured

by the degree of volatility of the fundamentals, σµ. We investigate those two dimensions

and their effect on partnership’s value in turn.
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4.1 Monitoring the Partnership

The equilibrium in our dynamic environment is inefficient because partners do not observe

each other’s effort. Otherwise, they could sustain efficiency by reverting to the inefficient

Markov equilibrium following any spat of shirking.25 It seems thus compelling that better

monitoring of the fundamentals in our game should increase the partnership’s value. The

following proposition shows that this intuition captures only part of the story.

Proposition 4 i) Suppose fundamentals are deterministic, σµ = 0. The supremum w∗ of

relational capital achievable in a local SSE is increasing in the precision of the monitoring

technology σ−1
Y .

ii) Suppose the fundamentals are stochastic, σµ > 0. The supremum w∗ of relational

capital achievable in a local SSE is arbitrarily close to zero, when monitoring is precise

enough (σ−1
Y sufficiently large).

iii) Suppose the fundamentals are stochastic, σµ > 0, and monitored perfectly, σY = 0.

The unique SSE is the Markov equilibrium, with relational capital w = 0.

When there is no uncertainty about the quality of the partnership and fundamentals

are deterministic, better monitoring always improves efficiency (part (i) of the proposi-

tion). The intuition is simple: absent uncertainty about the quality, the public signals are

used solely as signals of effort, and better monitoring mitigates informational frictions.26

When the quality of the fundamentals is uncertain, partners use public signals not

only to incentivize effort, but also to estimate the quality of the partnership. Better

monitoring still benefits the partnership by providing better signals of effort,27 but it also

25Modeling a continuous-time game with perfect monitoring runs into the usual problems. However,
“Grim-Trigger” strategies approximate efficiency in a discrete-time approximation of the game, given
that periods are “short” and so discount factor arbitrarily close to one, and the MinMax strategy is a
stage-game Nash equilibrium.

26Note that providing the same level of incentives with less noise requires less variability of relational
capital in equilibrium. Suppose σµ, r = 1, α = 0; generating relational incentives F of, say, one,
requires sensitivity I of relational capital to public signal equal one as well. This results in the volatility
of relational capital σY , increasing in noise. Formally, the only impact of σY on the HJB equation (11) is
through the last term, with the cost of incentives due to the second-order variation of relational capital
increasing in σY .

27See also the impact of improved monitoring on the incentivizing wage, in Appendix B. The impact
of better monitoring on the variability of relational incentives, as in the previous footnote, is analogous.
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results in better learning about the fundamentals (higher gain parameter γ). Crucially,

faster learning means that good outcomes are quickly incorporated in increased expected

fundamentals, and the window for rewarding unexpectedly high outcomes, and so effort,

shrinks. This shorter horizon for the incentive provision is particularly harmful at the

bliss point of the partnership, when effort can be motivated solely by future rewards

(Proposition 3). Part (ii) of Proposition 4 establishes that, with little noise, this negative

effect is dominant and eliminates relational incentives.28

In the extreme, if fundamentals are monitored with no noise, the current change

in fundamentals is a sufficient statistic to evaluate current effort. Incentives must be

provided immediately, as in the repeated game i.i.d. setting. Since this is not possible at

the bliss point of maximal relational capital, the construction of any relational incentives

unravels (part (iii) of the proposition). This impossibility is directly related to the results

in Sannikov and Skrzypacz [2007, 2010].

One solution to this impossibility, proposed by Abreu et al. [1991], is to withhold the

arrival of information; players observe the relevant path of signals only at times l, 2l, 3l,

etc., for a fixed time length l > 0. In the new game—with “compounded” periods, actions,

and signals—the horizon for incentive provision is still only the current period. However,

the bundling of information improves the information quality in any given period and

partners can be incentivized to work even when the relationship is at its best.

In this paper, we highlight an alternative solution, and the benefits of poorer moni-

toring of the state. Our results show that with perfectly monitored fundamentals it is

not the “short periods”, but the instantaneous flow of information and time horizon for

incentives that hampers the provision of incentives in the partnership.

Structuring Joint Economic Activity. Throughout the paper we have focused

on joint enterprises that are organized as partnerships, but modern economies display

28Note that, as σY shrinks, only the left-hand side (required mean flow of incentives) and the last
term in the HJB equation 11 (contribution of the incentive flow) are scaled up. When the middle
term capturing the benefit of delayed incentives disappears, the effect is similar as when the horizon for
incentive provision shrinks. Formally, the solution of the HJB equation that starts around w∗ > 0 would
reach arbitrarily high levels, since i) F ′′(w) is bounded away from negative infinity, as long as F (w) is
bounded away from zero; and ii) F ′(w) is arbitrarily steep close to w∗ (Theorem 1).
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a large variety of organizational structures. The optimal provision of incentives must

be tailored to the informational constraints and to the organizational structure of the

enterprise. For instance, in partnerships, the common ownership structure fosters long-

term relationships, hence relational incentives are key. In contrast, in other organiza-

tional structures—such as coorporations—the principal or owner of the enterprise relies

on contracts and performance-based wages, or career concerns to incentivize each of its

employees.29

The mechanism that underlies the benefit of poor monitoring in an ongoing partner-

ship, explained above, is peculiar to the provision of relational incentives. It relies on two

key elements. First, poor monitoring extends the time horizon for incentive provision;

and, second, partnerships are not able to provide immediate relational rewards at the

bliss point—when relational capital is maximal. We argue below that this mechanism is

absent and, as a result, poor monitoring has always adverse effect on incentives derived

from career concerns and performance-based wages. These contrasting comparative static

results have implications on the structuring of a firm across informational environments.

Building own reputation provides an alternative mechanism to incentivize effort (ca-

reer concerns, Holmström [1999]). Just as in the case of the long-term relational incen-

tives, reputation building is instrumental in very weak contractual environments, when

the publicly observable outcomes are not contractible, or payments schemes that con-

dition on it are not enforceable. In Appendix B we provide a version of Holmstrom’s

career concern model adapted to our setting, with two workers, the same production

technology—with fundamentals driven by two efforts and two qualities of the workers—

and the same information structure.

With career concerns, a worker exerts effort so that future good profit outcomes

are misattributed to his high quality, reflected in a higher competitive wage. When

public news becomes more informative about the fundamentals of the enterprise, good

outcomes increase the expected fundamentals of each worker faster, as with partnership.

However, differently than in a partnership, this has unambiguously positive effect on the

29See Prendergast [1999] for a review on the broad question of organizational design and its implications
on the provision of incentives.
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incentives, as the reputational benefits of effort accrue earlier on (see also Holmström

[1999] Proposition 1).30 Hence, improved monitoring and the shortening of the horizon

of incentives facilitates the provision of career-concern’s incentives.

Allowing worker’s compensation to be conditioned on public signal opens up a much

wider scope of contracts and performance-based compensation. These schemes rely on

detailed information being contractable and the heavy demands (in terms of both con-

tractability and enforceability) of such schemes has been widely discussed in the career

concerns and relational contracting literature. Rather than ignoring contracts entirely, we

introduce a simple model with costly (stationary and linear) transfers—wage payments—

that condition on public news.31 We provide further details in Appendix B.

The cost of incentivizing effort using performance-based wages is a consequence of

the information asymmetry in the environment. Improved monitoring improves public

signals’ informativeness, alleviating the informational frictions. Formally, we show in Ap-

pendix B that with better signals the variance of incentivizing wages, and hence the cost

of contracts goes down. Moreover, while we do not discuss this formally, we point out that

better monitoring and shorter time lag before the effects of worker’s actions materialize

puts less commitment demands on contracts. The difficulties associated with “short-

terminism” and preventing manipulations that materialize long after the job termination

are well know in the contracting literature (see, e.g., Edmans et al. [2012]).

The first prediction that follows from these comparative statics is a cross-section

of organizational structures across different industries. Partnerships may benefit when

progress of the venture is based on long-term, qualitative contributions. In contrast,

corporations, with their reliance on market-based incentives—employees hired for specific

tasks and rewarded either by improved reputation or, more directly, by a performance-

based wage—benefit when the progress is easier to quantify and measure, or if the data

becomes cheaper and more abundant. Hence, partnerships should be more prevalent in

industries in which the information about the venture is murkier.

30Career concerns benefits also exist at every state of the venture, with no “unravelling at the bliss
point”.

31See, e.g., Tirole [1988] for a textbook treatment of costly transfers.
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This prediction is consistent with the fact that partnerships are very common in the

professional sector, i.e. law firms, accounting, advertising (see Levin and Tadelis [2005]

and Von Nordenflycht [2010]). A key feature of these knowledge-intensive environments

is that the quality of a firm’s output is “opaque”32. Even after the output is produced

and delivered, its quality is hard to evaluate. For instance, for an advertising agency,

even after the campaign is published its quality and effects are hard to measure: Was

the advertising agency’s campaign responsible for the sales increase? A similar argument

holds for other professional partnerships, i.e. was the lawyer’s argument responsible for

the acquittal?

A second prediction that follows from these comparative statics is that, within a

particular industry, if technological changes lead to improvements in the monitoring of

the joint-venture’s fundamentals, with feedback about it becoming more abundant, then

partnerships should become less common in that industry. This is in line with the trend

in the last decades of professional partnerships moving away from fixed surplus shar-

ing rules and into individual productivity-based profit sharing (see Levin and Tadelis

[2005],Empson and Chapman [2006], and Empson [2010]).

4.2 Uncertainty about the quality of the partnership

In our environment, there is a second obstacle to partners’ monitoring of each other’s

effort: the quality of the partnership is stochastic and unobserved by the partners. The

uncertainty is captured by the degree of volatility of the fundamentals, σµ.33

In contrast to improved monitoring, reducing uncertainty about the quality of the

joint venture facilitates the provision of incentives. This is because reduced uncertainty

results in the public news more closely tracking the effort exerted by the partners, instead

of reflecting the exogenous changes in quality. We capture this intuition in the following

result:

32See Empson [2001], Greenwood and Empson [2003], Broschak [2004], and Von Nordenflycht [2010].
33More precisely, variance in beliefs is strictly increasing in σµ, end equals zero when σµ does; see

Equation 3.

25



Proposition 5 The supremum of relational capital, w∗, that the partnership can generate

in a local SSE increases with the precision regarding the partnership quality, σµ.

Depending on the level of uncertainty about the venture, a stream of bad outcomes is

interpreted differently. For instance, with little uncertainty (σµ is low or absent) expected

fundamentals barely respond to profit outcomes (as γ is close to zero) and, thus, are

much more sluggish than relational capital. In this case, a short string of sharp, low

profit realizations will unravel the partnership (Theorem 2), with hardly any effect on

its profitability (see Equations (2) and (3)). In other words, even a very profitable

partnership may unravel when its goodwill is tested by a series of adverse outcomes, even

though these have a negligible effect on the partnership’s profitability.

Corollary 2 In a near-optimal local SSE, at any point in time t, a partnership may

unravel in an arbitrarily short period of time after a sequence of unexpected bad news.

The accompanying change in the expected profitability is of order σµ times the amount of

bad news.

Figure 3 displays the differences in the dynamics of the fundamentals and of the

relational capital. It shows three different sample paths, highlighting that a partnership’s

relational capital is not determined by its profitability. Furthermore, even at dissolution,

partnerships have different levels of productivity.

Young and Old Partnerships Partnerships differ in levels of uncertainty about

the quality of the venture. In real world environments, a driving force behind such

uncertainty is the lack of experience among the partners. Younger joint ventures, tend to

have less experience, and hence more uncertainty about their technology, the product or

service, the environment, or themselves; while, in mature enterprises, the quality of the

joint venture is better known. For tractability, we consider only stationary models, with

uncertainty constant over time. We interpret it to be low for mature ventures, and high

for the young ones. An alternative would be to consider a fully non-stationary model,

with the uncertainty gradually shrinking (See Appendix C.1)
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Fundamental and Relational Capital: Comparing different Paths

This figure displays three different sample paths of the relational capital of a partnership, as a

function of the fundamentals of the relationship. The horizontal line marks the level of relational

capital at which effort is maximized.

Figure 3: Relational Capital and Fundamentals of a Partnership

Our results indicate that the use of relational incentives to motivate the partners

is more adequate at mature, long-standing relationships. As the partnership is better

understood, the partners can use the public news to more precisely reward the provision

of effort. In contrast, in young enterprises, the uncertainty about the quality of the joint

venture gets confounded with the uncertainty about the level of fundamentals. Hence, if

one of the partners free rides, part of the bad news will be attributed to a “worse than

expected” quality, inhibiting punishments.

We have discussed in the previous section how career concern incentives, in sharp

contrast with our results, are enhanced when the learning about the quality of the venture

improves. More uncertainty, and greater scope of learning has precisely the same effect

(via greater γ; see Holmström [1999]). More broadly, the scope of incentives that derive

from learning and manipulating beliefs of partners or of the market may be large for young

partnerships (see, e.g., Bolton and Harris [1999], Bar-Isaac [2007], Bonatti and Hörner

[2011]). However, the provision of incentives in mature ones must rely on relational

incentives, with the mechanism detailed in this paper.
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The proposition provides a novel rationale for why an employment period is common

before someone is made a partner in a professional partnership (see Levin and Tadelis

[2005], Ghosh and Waldman [2010], and Von Nordenflycht [2010]). While the literature

has focused on the partners learning the level of productivity of the candidate and only

promoting the candidate if productivity is above a set bar, our result highlights that

reducing the magnitude of the uncertainty might play a role as well.

Finally, we shine a light on the puzzling feature of why some partnerships decide to

break up, even if highly profitable. For instance, The Beatles (10 years together) and

Daft Punk (28 years) in music; Jamie Dimon and Sandy Weill from Citigroup (15 years)

in finance; and Daniel Humm and Will Guidara from Eleven Madison Park (13 years)

in fine-dining. Our result shows that, for experienced, mature enterprises, a string of

bad news can severely deteriorate the relationship and even lead to the dissolution of

the partnership, however with minimal effects over the overall profitability of the joint

venture. Younger enterprises, with more uncertainty about the partnership quality, tend

to burn their perceived productivity before dissolution.

5 Method and Extensions

In the first part of this section, we present the main steps in the proofs of Theorems 1 and 2

(details of the proofs are in Appendix A). We aim to highlight the broader methodological

contribution of our results and to explain why we cannot rely on the existing solution

methods. An abstract general model, the generalizations of Propositions 6 and 7, and a

range of special cases are presented in Appendix C.

In the second part of this section, we provide conditions on the primitives when our

“first-order approach” is valid, and a near-optimal local SSE is a SSE.

5.1 Method and proof sketch

Our results rely on a novel parametrization and a corresponding extension of the stochas-

tic control methods. Our method of solving for near-optimal local SSE consists of two
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steps. First, we parametrize the supremum of relational incentives as a function of rela-

tional capital; and, second, we establish that the boundary satisfies the HJB differential

equation (11). To the best of our knowledge, the approach of maximizing incentives as a

way to characterize the optimal equilibrium, as well as the HJB characterization of the

value function, when the value level affects the state variables, are novel.

Let us first discuss why a novel parametrization is needed. One alternative is to

consider equilibria in which play, and incentives in particular, depends on the past only

via a publicly observable exogenous variable, such as public beliefs µt (“Markov in µt”).

By ignoring relational incentives, and with the movement of beliefs exogenously given,

the benefit of this approach is its relative simplicity, which is particularly valuable in more

complex, nonlinear environments (see Cisternas [2017] for such a characterization of the

stock of incentives in a career concerns settings). The downside is that a characterized

equilibrium is not optimal.

Another alternative is to characterize the supremum continuation value (in our case,

relational capital) using incentives as a state variable, as is customary in Principal-Agent

problems, or Markov equilibria.34 Relative to our solution method, this approach would

swap the state variable and the objective, switching the axes in Figure 1. Under this

parametrization, however, the upper boundary of supremum relational capital would not

be self-generating, with the volatility of the value (relational capital) strictly positive

when the argument (local SSE incentives) is at its highest.35

Our parametrization avoids those complications. More broadly, our approach allows

for flexibility in choosing a parametrization of the boundary of local SSE relational capital-

incentive pairs (w,F ), as in Sannikov’s [2007] “geometric”solution method.

The new parametrization requires, in turn, an extension of the stochastic control

34The use of an additional state variable that relates to marginal incentives is well established; see e.g.
Werning [2001] or Kapička [2013], who introduce expected marginal utility of consumption, Williams
[2011], Prat and Jovanovic [2014], Sannikov [2014], and Prat [2015] who introduce expected marginal
utility of a state, or marginal incentives, in models of contracting with persistence.

35Given the characterization of the stock of incentives Ft in Proposition 2, zero volatility It requires
positive drift of Ft, contradicting its maximality. Positive volatility means that, in near-optimal local
SSE, the pair of relational capital and incentives may pass the extreme point and continue along the
lower boundary of the set of relational capital-incentive pairs achievable in a local SSE.
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methods. This is because it results in the law of motion of relational capital (state vari-

able) that depends—through the choice of effort, a (F (w))—on the level of the value

function F (see (9)). Theorem 1 establishes that the HJB characterization of supremum

incentives is, indeed, valid in this setting. We note that our contribution to the stochas-

tic control theory is related to Sannikov [2007] (see also Faingold and Sannikov [2020]):

there, methods are extended to settings, where state variables are affected by the deriva-

tive of the value function. This is necessary to analyze continuous-time games, with no

persistence.36 In our paper extends the techniques to settings, where state variables are

affected by the level of the value function. We are convinced that this is an important

step for the analysis of continuous-time games with persistence.

The following two propositions are the key methodological results underpinning The-

orem 1.37 The first proposition below shows, intuitively, that the solution to the HJB

equation in Theorem 1 provides a lower bound for the supremum of relational incentives

achievable in a local SSE.

Proposition 6 Consider a continuous I : [w,w] → R+ and a C2 strictly concave func-

tion F : [w,w]→ R that satisfy the differential equation

(r+α+γ)F (w) = (r+α)I(w) +F ′(w) (rw − [a(F (w))− c(a(F (w)))]) +
F ′′(w)

2
σ2
Y I

2(w), (15)

where a is defined in (8), such that each boundary point w∂ ∈ {w,w} together with

F
(
w∂
)

is either achievable by a local SSE or satisfies

(r + α+ γ)F (w∂) = F ′(w∂)
(
rw∂ −

[
a(F (w∂))− c(a(F (w∂)))

])
, (16)

sgn

(
w + w

2
− w∂

)
= sgn

(
rw∂ −

[
a(F (w∂))− c(a(F (w∂)))

])
.

Then, for every w0 ∈ [w,w] , there is a local SSE {at, at} achieving (w0, F (w0)).

In particular, the HJB equation (15) together with the function I that pointwise

36Note that the extension is not necessary for the analysis of the Principal-Agent problems, in which
Principal faces no incentive problems.

37Rest of the proof in the Appendix establishes regularity of the boundary, and the boundary conditions
(12).
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maximizes the right-hand side gives rise to the HJB equation (11) from Theorem 1. Ito’s

formula implies that if wt is the relational capital that follows (9) and F is a solution to

(15), then the process {F (wt)}t≥0 satisfies the differential equation (9) in Proposition 2

with sensitivities Jt = F ′(wt)×I(wt). Thus, {F (wt)}t≥0 captures the associated relational

incentives.

When the boundary point is a level of relational capital known to be achievable by

a local SSE, upon reaching this point, the game simply follows this local SSE. Under

the alternative boundary conditions (16), relational capital is reflected back, and the

construction as above continues. 38

The second proposition below shows, roughly, that the solution to the HJB equation

in Theorem 1 provides (locally) the upper bound to the supremum of relational incentives

achievable in a local SSE. More precisely, for “slack” λ > 0, consider a differential equation

related to (11),

(r + α+ γ)F̃ λ(w) = F̃ λ
′
(w)

(
rw −

[
a(F̃ λ(w))− c(a(F̃ λ(w)))

])
− (r + α)2

2σ2
Y F̃

λ
′′
(w)

+ λ. (17)

Proposition 7 For every λ > 0, there is δ > 0 such no concave solution F̃ λ of the

differential equation (17) on an interval [w,w], with
∣∣∣F̃ λ

′∣∣∣ ≤ 1/λ, satisfies both of the

following conditions:

i) F̃ λ(w) = E(w) and F̃ λ(w) = E(w),

ii) 0 < E(w)− F̃ λ(w) ≤ δ, for w ∈ (w,w) ,

where E parametrizes the upper boundary of relational incentives achievable in local SSE.

The result provides a novel escape argument for our setting. If the law of motion of

wt did not depend on the level of the value, as in a standard stochastic control problem,

the result would be true with λ = 0 and δ =∞. Any value above the solution of the HJB

38More precisely, the stock of incentives F
(
w∂
)

at the boundary can be generated by having either

I
(
w∂
)

= 0, with relational capital drifting back inside of [w,w], or I(w∂) = −2 r+α
σ2
Y F

′′(w)
> 0. In the

proof in Appendix A.4, we show how to reduce the second case to the first one by extending the functions
F and I beyond [w,w], with I = 0.
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equation could be justified only by it drifting ever higher or along the normal vector (see,

e.g., Lemma 4 in Sannikov [2007]). In our setting, value affects the law of motion of the

state variable. Thus, relational incentives higher than the solution to (11) may increase

the right-hand side of the HJB equation. As we show, when the difference is sufficiently

small, the benefits do not outweigh the slack λ in the definition of F̃ λ and can only be

justified by the value drifting even higher, out of the neighborhood of F̃ λ.

5.2 Global Incentive Compatibility

So far, we have characterized local equilibria. The following result shows conditions on

the primitives, under which local SSE satisfy full incentive-compatibility constraints.39

Existence of nontrivial SSE follows then from Proposition 3.

Theorem 3 Fix ε > 0 and consider an ε−optimal local SSE {at, at}. Then, {at, at} is an

SSE when CσY is sufficiently high, where C is the second derivative of the cost function

and σY is observational noise.

In particular, for a fixed ratio r+α+γ
r

, nontrivial SSE exist when CσY is sufficiently

high and r + α + γ sufficiently small.

The problem in establishing global incentive compatibility consists in showing that,

after any history, the effort choice is concave. Given that the effort cost function is strictly

convex, with second derivative C, this boils down to establishing bounds on how convex

the expected benefit of effort is. Crucially, in a dynamic environment with persistence,

like ours, a deviation affects the strength of incentives that the agent faces in the future.

This knock-on effect makes accounting for the benefits of deviations much more involved

than in a static setting, or without persistence.

Following up on this intuition, in order to bound how convex the benefit of effort is,

it is sufficient to establish a uniform bound on how sensitive the relational incentives are

with respect to public signals. The first part of the proof is related to the results in the

39Equation 46 in Appendix A.5 provides a precise sufficient condition on the parameters that guarantees
global incentive compatibility.
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literature and shows that there are no global deviations from a local SSE if this sensitivity

of relational incentives is uniformly bounded (see Williams [2011], Edmans et al. [2012],

Sannikov [2014], and Cisternas [2017]).

In the second part of the proof, we bound this endogenous sensitivity of relational

incentives by a function of the primitives of the model. This part of the proof relies

heavily on the analytical tractability of our solution and, in particular, the bounds on

derivatives F ′ε and F ′′ε , established in the proof of Theorem 2. Intuitively, large noise

σY makes incentives costly, resulting in their low sensitivity and, thus, in their relatively

linear benefit of effort.

6 Concluding Remarks

In this paper, we present a dynamic model of partnership whose three central features

are effort that shapes a persistent state, imperfect state monitoring, and learning about

the state. We develop a method that allows us to characterize near-optimal strongly

symmetric equilibria of the game with a simple HJB equation. Its solution describes the

supremum of relational incentives achievable in an SSE for a given level of relational cap-

ital and fully characterizes equilibrium dynamics in near-optimal equilibria. Imperfect

state monitoring extends the time horizon for incentive provision, which helps sustain non-

trivial relational incentives and equilibrium effort, helping partners. The model provides

a novel rationale for the prevalence of partnerships in environments, in which progress,

or product quality are hard to measure. We believe the method will contribute to the

analysis of continuous-time games with persistence.
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A Appendix: Proofs

A.1 Proofs of Propositions 2, 6, and 7.

Proof of Proposition 2. The proof can be split in two parts. First, we establish that

for an arbitrary pair of symmetric strategies {at, at}, relational capital {wt} follows a pro-

cess (9), for some L2 process {It} and a martingale {Mw
t } orthogonal to {Yt}. The proof

follows similar steps as Proposition 1 in Sannikov [2007]. We derive the representation

for the relational capital process in (9) in the second step.

The process
{
Yt −

∫ t
0
µsds

}
, scaled by σY , is a Brownian Motion, and the process

w̃t =
∫ t

0
e−rs (as − c(as)) ds+e−rtwt is a martingale. Since efforts, and so w̃t are bounded,

it follows from Proposition 3.4.14 in Karatzas [1991] (of which the Martingale Repre-

sentation Theorem is a special case, when the filtration Ft is generated only by the

process of profits) that w̃t equals
∫ t

0
e−rsIs (dYs − µsds) + Mw

t , for an appropriate {It}

and a martingale {Mw
t }. Differentiating and equating both expressions for w̃t yields the

representation.

Conversely, for a bounded process {vt} that satisfies (9), define the process ṽt =∫ t
0
e−rs (as − c(as)) ds+e−rtvt, together with w̃t as above. Both {ṽt} and {w̃t} are bounded

martingales and so, as their values agree at infinity, they agree after every history. It

follows that the processes {vt} and {wt} are the same. This establishes the first step.

Let us now evaluate the marginal benefit of effort, and the marginal relational benefit

of effort Fτ in particular. Consider the Brownian Motion σ−1
Y

{
Yt −

∫ t
0
µsds

}
. It follows

from Girsanov’s Theorem that the change in the underlying density measure of the output

paths induced by the change in expected fundamentals from µτ to µdevτ = µτ + ε(r+α) is

Γεt = e
− 1

2

∫ t
τ

(µdevs −µs)
2

σ2
Y

ds+
∫ t
τ
µdevs −µs

σY

dYs−µsds
σY ,

for t > τ , where {µs}s≥τ and {µdevs }s≥τ are the associated paths of estimates, defined in

(2), with µdevs − µs = εe−(α+γ)(s−τ), s > τ . The relational capital at time τ thus changes

1



to

E{at,at}τ

[∫ ∞
τ

e−r(t−τ)Γεt (at − c(at)) dt
]
.

Since

∂

∂ε
Γεt

∣∣∣∣
ε=0

= (r + α)

∫ t

τ

e−(α+γ)(s−τ)dYs − µsds
σY

,

it follows that

Fτ =
∂

∂ε
E{at,at}τ

[∫ ∞
τ

e−r(t−τ)Γεt (at − c(at)) dt
]

= (r + α)E{at,at}τ

[∫ ∞
τ

e−r(t−τ) (at − c(at))
(∫ t

τ

e−(α+γ)(s−τ)dYs − µsds
σY

)
dt

]
= (r + α)E{at,at}τ

[∫ ∞
τ

(∫ ∞
t

e−r(s−t) (as − c(as)) ds
)
e−(r+α+γ)(t−τ)dYt − µtdt

σY

]
,

where the last equality follows from the change of integration.

Intuitively, in the last integral above, the inside integral corresponds to the forward

looking relational capital, which is then multiplied by a Brownian innovation, scaled by

the discounted impact of shifted (expected) fundamentals. The correlation between the

relational capital and the Brownian innovation equals It, from the representation of the

relational capital. This yields Fτ as the expected discounted integral of It.

Formally, for τ ′ ≥ τ,

E{at,at}τ ′ [Fτ ] = (r + α)E{at,at}τ ′

[∫ ∞
τ

(∫ ∞
t

e−r(s−t) (as − c(as)) ds
)
e−(r+α+γ)(t−τ)dYt − µtdt

σY

]
= (r + α)

[∫ τ ′

τ

(∫ τ ′

t

e−r(s−t) (as − c(as)) ds

)
e−(r+α+γ)(t−τ)dYt − µtdt

σY

]

+ (r + α)wτ ′ ×

[∫ τ ′

τ

e−r(τ
′−t)e−(r+α+γ)(t−τ)dYt − µtdt

σY

]
+ e−(r+α+γ)(τ ′−τ)Fτ ′

is a martingale, as a function of τ ′. Using the representation of the relational capital

established above, the drift of this martingale equals

(r + α)

[
e−(r+α+γ)(τ ′−τ)Iτ ′ + ((aτ ′ − c(aτ ′))− rwτ ′)

∫ τ ′

τ

e−r(τ
′−t)e−(r+α+γ)(t−τ)dYt − µtdt

σY

]
+
d

dt
e−(r+α+γ)(τ ′−τ)Fτ ′ ,

2



where the first term is the covariance of the Brownian increments of (r + α)wτ ′ and of

the bracketed stochastic intergral in the last line. Integrating over [τ,∞) and taking

expectation at time τ yields

0 = (r + a)E{at,at}τ

[∫ ∞
τ

e−(r+α+γ)(t−τ)It

]
− Fτ .

Using Proposition 3.4.14 from Karatzas [1991] one more time, Fτ satisfies the above

equation precisely when it can be represented as in (9).

Finally, since effort increases fundamentals by (r+α)dt, and given the decomposition

of the continuation value as in (6), the effort process is a local SSE exactly when at

satisfies at = a(Ft) (see e.g. the Verification Theorem in Yong and Zhou [1999] Ch.3.2).

This establishes the proof.

Proof of Proposition 6. Note that the boundary condition (16) can be satisfied

in two ways. The first line of (16) is equivalent to I
(
w∂
) (
r + α + F ′′(w)

2
σ2
Y I(w∂)

)
= 0,

which can hold either when I
(
w∂
)

= 0, or I(w∂) = −2 r+α
σ2
Y F
′′(w)

> 0. Construction of

a local SSE that achieves the boundary in the case I(w∂) > 0, when relational capital

“escapes” the interval [w,w], requires an additional step, as we detail below.

First, we extend the functions F and I beyond the boundary points w∂, at which

condition (16) is satisfied with I
(
w∂
)
> 0. Consider a boundary point w∂ = w and

rw∂ −
(
a(F (w∂))− c(a(F (w∂)))

)
< 0. We use the Implicit Function Theorem to extend

function F to a point w > w, so that conditions (16) and F ′′ (w) < 0 hold on
[
w,w

]
.

We also extend I continuously to the interval
[
w,w

]
with I(w) = −2 r+α

σ2
Y F
′′(w)

> 0, so

that F and I satisfy the equation (15) on
[
w,w

]
. In words, on the interval

[
w,w

]
the

relational incentives can be provided in two ways: they can either consist entirely of the

discounted future relational incentives, with zero flow, or by providing inefficiently high

flow of relational incentives I. The extension to the interval
[
w,w

]
in the case of w∂ = w

is analogous.

Fix w0 ∈ [w,w]. We first construct a process {wt} of continuation values that satisfies

the stochastic equation (9). Let τ∞ be the stopping time when {wt} reaches a boundary

point that is a local SSE. Moreover, define a sequence of stopping times (τn)n∈N+
such

3



that τ0 = 0; for n odd, τn ≥ τn−1 is the stopping time when {wt} reaches either of the

new, “outside” boundary points
{
w,w

}
; and for n > 0 even, τn ≥ τn−1 is the stopping

time when {wt} reaches either of the original “inside” boundary points {w,w}. For

times t ∈ [τn, τn+1) with n even and t < τ∞ we let {wt} be the weak solution to (9),

with It = I (wt) and {Mw
t } = 0, starting at wτn . Existence of a weak solution follows

from the continuity of it’s drift (which is a consequence of continuity of F and action

defined via (8)) and volatility I (see e.g. Karatzas [1991], Theorem 5.4.22). For times

t ∈ [τn, τn+1) with n odd and t < τ∞ we let {wt} be the weak solution to (9), with It = 0

and {Mw
t } = 0, starting at wτn . In words, the process {wt} has positive volatility until it

reaches an “outside” boundary point in
{
w,w

}
, after which it drifts “inside” till it reaches

the “inside” boundary point in {w,w}, when it resumes with the positive volatility, and

so on.

It follows from Ito’s formula that before τ∞ the process Ft = F (wt), satisfies the

differential equation in (9), with
{
MF

t

}
= 0 and Jt = F ′(wt)× I(wt). Since both wt and

Ft are bounded, the transversality conditions are satisfied. Finally, we may extend the

processes {wt} , {It} , {Ft} and {Jt}, together with martingales {Mw
t } and

{
MF

t

}
beyond

τ∞ by letting them follow a local SSE that achieves (wτ∞ , F (wτ∞)). Then the processes

satisfy conditions of Proposition 2.

Proof of Proposition 7. Fix (w0, F0) with w0 ∈ (w,w) and F λ(w0) < F0 < E(w0),

together with a local SSE that achieves it, and let {wt} and {Ft} be the processes of

relational capital and relational incentives it gives rise to. Define D(wt, Ft) as the distance

of Ft from the solution F λ of the differential equation (17),

D(wt, Ft) = Ft − F λ(wt).

Using Ito’s lemma together with the Proposition 2, at any time t when D (wt, Ft) ∈ [0, δ],
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the drift of the process D(wt, Ft) equals, for appropriate process {It},

E [dD(wt, Ft)]

dt
= (r + α+ γ)Ft − (r + α)It − F λ′(wt)× (rwt − (a(Ft)− c(a(Ft)))) (18)

−
F λ′′(w)

[
σ2
Y I

2
t + d 〈Mw

t 〉
]

2

≥ (r + α+ γ)Ft − (r + α)It − F λ′(wt)×
(
rwt −

(
a(F λ(wt))− c(a(F λ(wt)))

))
−
F λ′′(w)

[
σ2
Y I

2
t + d 〈Mw

t 〉
]

2
− λ

2

≥ (r + α+ γ)
(
Ft − F λ(wt)

)
+ λ− λ

2
> (r + α+ γ)×D(wt, Ft),

The first inequality holds because
∣∣F λ′(wt)

∣∣ ≤ 1/λ, functions a and c are Lipschitz

continuous and D (wt, Ft) ∈ [0, δ], where δ is assumed to be sufficiently small. The

second inequality follows because F λ satisfies

(r + α+ γ)F λ(w) = max
I

{
(r + α)I + F λ′(w)

(
rw −

(
a(F λ(w))− c(a(F λ(w)))

))
+
F λ′′(w)σ2

Y

2
I2
}

+ λ,

(19)

F λ is concave, and d 〈Mw
t 〉 is positive. Let τ be the stopping time of the process D(wt, Ft)

hitting zero. Due to D(w0, F0) > 0 and inequality (18), it follows that there is a finite

time T such that E [D(wT , FT )|τ ≥ T ] > δ. On the other hand, since

E
[
D(wmin{T,τ}, Fmin{T,τ})

]
= P (τ ≥ T )× E [D(wT , FT )|τ ≥ T ]

+ P (τ < T )× E [D(wτ , Fτ )|τ < T ]

= P (τ ≥ T )× E [D(wT , FT )|τ ≥ T ] ,

and the expectation is positive, it follows that P (τ ≥ T ) > 0. This establishes that

D(wT , FT ) exceeds δ with positive probability, contradiction.

A.2 Proof of Theorem 1

Let E to be the set of pairs of relational capital and relational incentives, (w,F ), achievable

in local SSE, and let the partial function E : R→ R parametrize the upper boundary of

this set, as a function of w.
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We begin the proof of the Theorem with the following two technical lemmas. We

define the efficient level of relational capital as wEF = 1
r

(aEF − c(aEF )), for the efficient

effort level aEF , with c′(aEF ) = 1. Let also F be the lower arm of the parabola, which is

the locus of the feasible relational capital-incentives pairs (w,F ) that can be achieved by

symmetric play in a stage game, satisfying rw = a(F )− c(a(F )); see Figure 1.

Lemma 1 The set E is convex and w∗ ≤ wEF . Moreover, the upper boundary E satisfies

E (w) ≥ F (w) > 0, w ∈ (0, w∗).

Proof. Convexity is immediate from the possibility of public randomization, and the

inequality w ≤ wEF follows from the definitions. Finally, suppose by the way of contra-

diction that there exists w, 0 ≤ w < w∗, such that E(w) < F (w). Note that at w the

slope of E is smaller than the slope of F : otherwise, the repeated static Nash point (0, 0),

belonging to the graph of the convex function F , and the convex set E would not overlap.

This implies that E is bounded away below F to the right of w, and so in any local SSE

the relational capital has drift bounded away above zero, as long as wt ≥ w (see (9)).

The possibility of escape of relational capital beyond w∗ establishes the contradiction.

Lemma 2 Let F,E : [w,w)→ R be two concave functions such that

i) E ≤ F,

ii) E(w) = F (w) and E ′+(w) = F ′+(w),

iii) F ′′+(w) exists

Then either E ′′+(w) exists and equals F ′′+(w) or there is G with G(w) = E(w), G′+(w) =

E ′+(w) and G′′+(w) < F ′′+(w) such that E ≤ G in a right neighborhood of w.

Proof. Suppose that E ′′+(w) does not exist or is not equal to F ′′+(w). From i), this means

that there is a ε > 0 and a decreasing sequence {wn} → w such that

E(wn) ≤ F (w) + F ′+(w)× (wn − w) +
(
F ′′+(w)− ε

)
× (wn − w)2 .
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However, concavity of E implies that the above inequality holds not only for the

sequence {wn} but in a right neighborhood of w. This implies the result, with G(w) =

F (w)− ε(w − w)2 in a neighborhood of w.

The proof of Theorem 1 rests on the following four propositions. Relying on Propo-

sitions 6 and 7, as well as the above two lemmas, they establish that: (i) the boundary

points (w,E(w)), for w > 0, may not be generated by solely defered incentives from the

future and require strictly positive volatility of relational capital, or flow of incentives; (ii)

the boundary E is differentiable; (iii) given any boundary point (w,E(w)) and a tangent

vector E ′, the solution of HJB equation (11) with those boundary conditions must locally

lie weakly above the boundary E as well as (iv) weakly below the boundary E.

The propositions thus establish that in the range where the boundary E(w) is strictly

positive, it must satisfy the HJB equation (11). The proof is then concluded by estab-

lishing the boundary conditions (12).

Proposition 8 If (1, E ′) is a tangent vector at (w0, E(w0)), with w0 > 0, then

(r + α + γ)E(w0) > E ′ × (rw0 − [a(E(w0))− c(a(E(w0)))]) . (20)

Proof. Pick w0 > 0; it follows from Lemma (1) that E(w0) > 0. If the drift term is

zero, rw0 − (a(E(w0))− c(a(E(w0)))) = 0, then (20) holds. Suppose then that the drift

is strictly negative, rw0− (a(E(w0))− c(a(E(w0)))) < 0 (when the inequality is reversed

the proof is analogous), and such that inequality (20) fails. Assume also that (w0, E(w0))

is achieved by a local SSE, as opposed to being a limit of local SSE pairs – an assumption

that we relax at the end of the proof.

Let E
′ ≥ E ′ be such that (20) holds with equality, with E

′
in place of E ′. Consider

the function F defined over [w0, w
′], where w′ is in the right neighborhood of w0, such

that F satisfies (20) with equality, with initial contition (F (w0), F ′(w0)) = (E(w0), E
′
),

and such that w − (a(F (w))− c(a(F (w)))) < 0 for all w ∈ [w0, w
′]. F is the solution of

the implicit function second order ordinary differential equation.

7



Since (w0, F (w0)) is achieved by a local SSE and the boundary condition (12) holds

at w′, the function F satisfies conditions of Proposition 6, together with I ≡ 0. Conse-

quently, there are local SSE that achieve every pair in its graph, and so the function lies

below the boundary, F (w) ≤ E(w), w ∈ [w0, w
′]. (Note that it follows that the inequality

(r+α+ γ)E(w0) < E ′× (rw0 − [a(E(w0))− c(a(E(w0)))]) is impossible, or else E
′
> E ′

and F lies above E.)

Consider now a strictly concave quadratic function G∗ defined in the right neighbor-

hood of w0 with (G∗(w0), G∗′(w0)) = (E(w0), E ′(w0) and G∗(w) < F (w) for w > w0. The

function satisfies

(r + α+ γ)G∗ (w) < G∗′(w) (rw − [a(G∗(w))− c(a(G∗(w)))])− (r + α)2

2σ2
YG
∗′′ , (21)

in a right neighborhood of w0. But then, by increasing slightly G∗′(w0), we may construct

a quadratic function G over an inteval [w0, w] that also satisfies (21), together with

G(w0) = E(w0), G′(w0) > E ′(w0), and G(w) < E(w). There exists then a function

I : [w0, w]→ R, with I(w) > − (r+α)2

σ2
Y G
′′ , such that

(r + α+ γ)G (w) = I(w) +G′(w) (rw − [a(G(w))− c(a(G(w)))]) +
G′′σ2

Y

2
I2. w ∈ [w0, w]

Applying Proposition 2, each point (w,G(w)), for w ∈ [w0, w], can be achieved by a local

SSE. Since G′(w0) > E ′(w0), this yields the desired contradiction.

Finally, when (w0, E(w0)) is not achieved by a local SSE, the result follows for the func-

tions F,G∗, and G defined analogously as before, but with F (w0) = G∗(w0) = G(w0) =

E(w0)− ε, for sufficiently small ε > 0.

Consider now the HJB equation (11), written as F ′′(w) = F(w,F, F ′). Proposition 8

implies that the right hand side of this equation is well defined and is Lipschitz continuous

in the neighborhood of the points (w0, E(w0), E ′), for any w0 in (0, w∗) and a tangent

vector (1, E ′), with F ′′ < 0. The following corollary is used repeatedly in the proof of the

theorem:

Corollary 3 The solution of the HJB equation (11) exists and depends continuously on
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the initial parameters in the neighborhood of the boundary condition (w0, E(w0), E ′), for

any w0 in (0, w∗) and a tangent vector (1, E ′).

Proposition 9 The upper boundary E of the set of relational capital and relational in-

centives achievable in a local SSE is differentiable in (0, w∗).

Proof. Suppose to the contrary that (w0, E(w0)) is a kink. If follows from Proposition

8 that for any tangent vector (1, E ′) at (w0, E(w0))

(r + α + γ)E(w0) > E ′ × (rw0 − [a(E(w0))− c(a(E(w0)))]) .

Continuous dependence on the initial parameters implies that there exists λ > 0

such that F λ∗ solving (17) with the same initial conditions is strictly above curve E in

a neighborhood of w0 (excluding point w0). Invoking the continuous dependence once

again, this time shifting the initial condition (w0, E(w0), E ′) down to (w0, E(w0)− δ, E ′),

for 0 < δ << λ, we construct a function F λ that satisfies the conditions of Lemma 7,

yielding a contradiction.

Proposition 10 For any w0 in (0, w∗), the solution F to the differential equation (11)

with initial condition (w0, E(w0), E ′(w0)) is weakly above the curve E in a neighborhood

of w0.

Proof. Suppose to the contrary that F < E in, say, the right neighborhood of w0

(the case of the left neighborhood is analogous). From continuous dependance on the

initial parameters, there are ε, δ > 0 such that that the solution F̃ of (11) with initial

conditions (w0, E(w0)− δ, E ′(w0) + ε) crosses above and then comes back to E, meaning

F̃ (w1) > E(w1) and F̃ (w2) < E(w2) for some w2 > w1 > w0. But then the function F̃

defined on [w0, w2] satisfies conditions of Proposition 6, and so its graph is achievable by

local SSE. This yields a contradiction.
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Proposition 11 For any w0 in (0, w∗), the solution F to the differential equation (11)

with initial condition (w0, E(w0), E ′(w0)) is weakly below the curve E in a neighborhood

of w0.

Proof. Let F satisfy (11) with initial conditions (w0, E(w0), E ′(w0)) and suppose that

either E ′′+(w0) does not exist, or E ′′+(w0) 6= F ′′+(w0) (the case of left second derivative is

analogous). Propositions 9 and 10 establish that the conditions of Lemma 2 are satisfied

at w0, and so in the right neighborhood of w0 E is bounded above by F (w)−ε(w−w0)2, for

appropriate ε > 0. Continuous dependence on initial parameters implies that there exists

ε > 0 such that F λ∗ solving (17) with the same initial conditions (w0, E(w0), E ′(w0))

as F has second derivative at w0 strictly larger than F ′′(w0) − ε and is strictly above

curve E in a right neighborhood of w0 (excluding point w0). Invoking the continuous

dependence once again, this time turning the initial condition (w0, E(w0), E ′(w0)) right

to (w0, E(w0), E ′(w0)− δ), for 0 < δ << λ, we construct a function F λ that satisfies the

conditions of Lemma 7, yielding a contradiction.

The proof so far established that the boundary E satisfies the HJB equation (11)

on (0, w∗). To conclude the proof of the theorem, it remains to establish the boundary

conditions (12).

1. E(0) = 0. Strictly positive relational incentives at zero in a local SSE would imply

that the expected discounted efforts by each agent are strictly positive; consequently,

a deviation to zero effort always would yield a nonzero relational capital to a partner,

contradiction.

2. limw↑w∗ E(w) = F (w∗). i) Lemma 1 shows that limw↑w∗ E(w) < F (w∗) is im-

possible. ii) If limw↑w∗ E(w) ∈
(
F (w0), F (w0)

)
, then, using Proposition 2, it would be

possible to extend the solution to the right, with I(w) = 0 for w > w∗, contradic-

tion. iii) If limw↑w∗ E(w) = F (w0) then, whether E approaches F from above or below,

the differential equation (11) would be violated in the left neighborhood of w∗. iv) If

limw↑w∗ E(w) > F (w0), then relational capital in any local SSE achieving points close to

(w∗, limw↑w∗ E(w)) has strictly positive drift, bounded away from zero. This would lead

to the escape of w to the right of w∗, with positive probability.
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3. limw↑w∗ E
′′(w) = −∞. When the condition is violated, then I∗(w) is continuous

and strictly positive close to w∗. The proof of the theorem so far establishes that E is

C2 and satisfies the differential equation (11). Given this regularity, standard verification

theorem techniques establish that the equilibria achieving (w,E(w)), w < w∗, must use

the optimal flow of relational incentives I∗(w) a.e. (see Yong and Zhou [1999]); when

(w,E(w)) is unattainable, the same is true for (w,F ) in the limit, with F approaching

E(w). This, however, leads to the relational capital escaping to the right of w∗, with

positive probability.

A.3 Proof of Proposition 3

Part i) The proof strategy is to construct a a C2 function F : [0, w] → R that satisfies

the differential inequality

(r + α + γ)F (w) ≤ F ′(w)× (rw − [a(F (w))− c(a(F (w)))])− (r + α)2

2σ2
Y F
′′(w)

, (22)

together with the left boundary condition F (0) = 0 (achieveable by the Markov equi-

librium), and the right boundary condition (16). Given such an F , it is always possible

to find an I(w) ≥ − r+α
σ2
Y F
′′(w)

for which the equation (15) in Proposition 6 holds at every

w ∈ [0, w].

Given the quadratic cost of effort c(a) = a
2

+ C
2
a2, the flow payoffs (given interior

efforts) satisfy

a(F )− c(a(F )) =
F (w)

2C
(1− F (w)) ,

and also F ′(0) = 2Cr (see Section 3.2). We will construct a curve F over [0, w], with

w = δ/r = 1
16Cr

, constant second derivative and with the right boundary condition

F (w) =
1

2
> F (w),

as well as

F ′ (w) =
(r + α + γ)F (w)

rw − F (w)
2C

(1− F (w))
=

1
2
(r + α + γ)

δ − 1
8C

= −4C(r + α + γ),
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so that the first equation in (16) is satisfied at w; the second equation follows from

F (w) ∈
(
F (w), F (w)

)
.

The constant second derivative D is pinned down by

F (w) =

∫ w

0

F ′(x)dx =

∫ w

0

[F ′(w)−D (w − x)] dx

= F ′(w)× δ

r
− D

2

(
δ

r

)2

,

1

D
=

1

2

1

F ′(w)× δ
r
− F (w)

(
δ

r

)2

=
1

2

1

−1
4
(r + α + γ)× 1

r
− 1

2

(
δ

r

)2

= − 2

2 + r + α + γ

(
δ

r

)2

.

It follows that, for all w ∈ [0, w],

F (w) ≤ 1

2
+ 4C(r + α + γ)× δ

r
≤ r + α + γ

r
, (23)

|F ′(w)| ≤ F ′(0) ≤ |F ′ (w)|+ F (w)− 0

|F ′ (w)|
|D| = 4C(r + α + γ) +

2 + r + α + γ

r + α + γ
16Cr2,

rw − F (w)

2C
(1− F (w)) ≥ − 1

8C
,

(r + α + γ)F (w)− F ′(w)

(
rw − F (w)

2C
(1− F (w))

)
≤ (r + α + γ)2

r

+
r + α + γ

2
+

2 + r + α + γ

r + α + γ
2r2,

−(r + α)2

2σ2
YD

=
(r + α)2

2σ2
Y

2

2 + r + α + γ

(
1

16Cr

)2

≥ 2

512σ2
YC

2(2 + r + α + γ)
,

where we also assume that the bound A is high enough so that the efforts are interior,

A ≥ C
r + α + γ

r
≥ C max

w
F (w) ≥ max

w
a (F (w)) .

The last two inequalities in (23) establish that inequality (22) is satisfied, and so

nontrivial local SSE exist, as long as

(r + α + γ)2

r
+
r + α + γ

2
+ 2r2 2 + r + α + γ

r + α + γ
≤ 2

512σ2
YC

2(2 + r + α + γ)
,

or

(r+α+γ)
2 + r + α + γ

2

(
r + α + γ

r
+

1

2
+ 2 (2 + r + α + γ)

(
r

r + α + γ

)2
)
≤ 1

512σ2
YC

2
.

(24)
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This establishes the proof of part i) of the proposition.

Results do not depend of normalizing the marginal benefit of effort: The

proposition remains true when the effect of action is scaled up by X > 1, so that dµt =

X (r + α) (a1
t + a2

t )dt − αµtdt + σµdB
µ
t (for example, when the effect is independent of

r+α, we have X = (r+α)−1). We briefly comment here how the proof of the proposition

must be adjusted.

For a fixed X > 1 the Markov equilibrium action becomes aXM = X−1
2C

, and, given

relational incentives FX , the locally optimal action aX(FX) equals aXM + FX

C
. The

flow of relational capital (flow of equilibrium utility net of Markov equilibrium level)

is XaX(FX)− c(aX(FX)), which equals FX

2C

(
X − FX

)
; consequently, the HJB equation

generalizes from (11) in Theorem 1 to

(r + α+ γ)FX(w) = max
I

{
X(r + α)I + FX′(w)

FX(w)

2C
(X − F (w)) +

FX′′(w)σ2
Y

2
I2

}
(25)

= FX′(w)
FX(w)

2C

(
X − FX(w)

)
− X2(r + α)2

2σ2
Y F

X′′(w)
.

For the new parametrization, the construction remains analogous as in the proposition,

with aXEF = Xw1
EF , wXEF = Xw1

EF , wX = Xw1, FX(wX) = XF 1(w1), FX′(wX) =

F 1′(w1), and FX′′(w) = 1
X
F 1′′(w). The bounds (23) in the proof change to: FX(w) ≤

X × F 1(1), |FX′(w)| = |F 1′(w)|, and (rw − (2C−1)FX(w)(X − FX(w))) ≥

X × (rw − (2C−1)FX(w)(X − FX(w))). Consequently, all the terms in the inequality

(22) are bounded by the terms scaled up by X, and the inequality continues to hold.

Part ii) Fix w > 0. In the proof we show that if the constant in the statement of the

proposition is sufficiently high, then w∗ ≤ w.

Suppose that w∗ > w. Observe that for all w such that F ′(w) ≤ 0 we have

F (w) ≥ lim
s→w∗

F (s) = F (w∗) > F (w) ≥ 2Crw =: A, (26)

where the last inequality follows from F (0) = 0, F ′(0) = 2Cr, and F convex. Secondly,

recall from Theorem 1 that as w approaches w∗ from the left, then F ′(w) gets arbitrarily
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high, and F ′′(w) arbitrarily low. Finally, note that for any w > 0 the drift of the relational

capital is uniformly bounded from below by

rw−(a(F (w))− c(a(F (w)))) > −[a(F (w))−c(a(F (w)))] ≥ −[aEF−cEF ] = − 1

8C
=: −B.

(27)

In the first part of the proof we establish that if the constant in the statement of the

theorem is sufficiently high, then the the value F (w#) of relational incentives at the point

w# such that F ′(w#) = 0 would be arbitrarily high as well. We lead it to contradiction

in the second part of the proof.

Fix w close to w∗, such that−F ′′(w) equals ε−1 > 0 sufficiently large, to be determined

later. Consider the differential equation

(r + α + γ)A = −G′(w)B − (r + α)2

2σ2
YG
′′(w)

, (28)

together with a boundary conditionG(w) = F (w), G′′(w) = F ′′(w), and solved for w ≤ w.

Let w## < w be such that G′
(
w##

)
= 0. We argue that

G′(w) > F ′(w), for all w ∈ [w##, w]. (29)

Indeed, note that F satisfies equation (11), related to (28), but with F (w) in place of

A, and rw − (a(F (w))− c(a(F (w)))), in place of −B. It follows from (26) and (27)

that (29) holds at w = w. Similarly, suppose w&, w# < w& < w, was the maxi-

mal point such that G′(w&) ≤ F ′
(
w&
)
. It follows that F (w&) > G(w&) and rw& −(

a(F (w&))− c(a(F (w&)))
)
> −B, and so G′′(w&) < F ′′(w&). This last inequality con-

tradicts maximality of w&.

Crucially, inequality (29) implies that

F (w#) > G(w##), (30)

for the maximal values of the respective functions, with F ′(w#) = 0 and G′(w##) = 0.

We now compute G(w##). The solution to the differential equation (29) takes the

form

G′(w) =

√
ε2 + 2c(w − w)− d

c
, G′′(w) = − 1√

ε2 + 2c(w − w)
,
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for

d = 2

(
σY
r + α

)2

(r + α + γ)A, c = 2

(
σY
r + α

)2

B.

It follows that

w## = w − d2 − ε2

2c
,

G(w##) = G(w)−
∫ w

w##

G′(w)dw = G(w)−
∫ w

w##

√
ε2 + 2c(w − w)− d

c
dw

= G(w) +
d2 − ε2

2c

d

c
+

1

c

2

3

1

2c

[
ε2 + 2c(w − w)

]3/2∣∣∣w
w##

= G(w) +
d2 − ε2

2c

d

c
+

ε3

3c2

d2 − ε2

2c
− 1

3c2

(
d2 − ε2

)3/2 ≥ d3

2c2
− d3

3c2
=

1

6

d3

c2
,

where the last inequality holds when ε is chosen small enough.

Substituting for d, c, and B in the above bound for G(w##), and using (30) we have

F (w#) ≥ 64

3

(
σY
r + α

)2

(r + α + γ)3CA3 =: D. (31)

We now derive a contradiction from (31), when D is large enough. Let w◦ ∈ (w#, w)

be such that F (w◦) = 1
2
D. Note that when, as we shall suppose,

1

2
D > 1 = F (0) ≥ F (w), for all w ∈ [0, wEF ] ,

then for all w ∈ [w#, w◦] the drift of relational capital rw − (a(F (w))− c(a(F (w)))) is

positive, and so

(r + α + γ)F (w) < − (r + α)2

2σ2
Y F
′′(w)

, w ∈ [w#, w◦]

or

− F ′′(w) <
(r + α)2

2σ2
Y (r + α + γ)F (w)

≤ (r + α)2

σ2
Y (r + α + γ)D

, w ∈ [w#, w◦]. (32)

Summarizing, when D > 2 we have

1

2
D = F (w#)− F (w◦) <

(r + α)2

σ2
Y (r + α + γ)D

(w◦ − w#)2

<
(r + α)2

σ2
Y (r + α + γ)D

(
1

8Cr

)2

,

where the first equality follows from the definition of w◦, the first inequality follows from

15



F ′(w#) = 0 and the bound (32), and the lest bound follows from w◦−w# < wEF−0 = 1
8Cr

.

Rearranging the last inequality, and substituting for D we have the necessary condition

1 > 32D2C2r2σ
2
Y (r + α + γ)

(r + α)2
=

64326

18
C10r8

(
σY
r + α

)6

(r + α + γ)7w6, (33)

which establishes contradiction, when r + α + γ is sufficiently large. This concludes the

proof of the proposition.

Results do not depend of normalizing the marginal benefit of effort: As in

the case of part i), part ii) of the proposition remains true when the effect of action is

scaled up by X < 1, so that dµt = X (r + α) (a1
t + a2

t )dt− αµtdt + σµdB
µ
t (for example,

when the effect is independent of r + α, we have X = (r + α)−1). We briefly comment

here how the proof of the proposition must be adjusted.

Fix X < 1; the bounds in the proposition change to AX = 1
X
A1, BX = X × B1, and

the last term in the equation (28) is scaled up by X2 (see (25)). Consequently, dX =

1
X3d

1, cX = 1
X
× c1, GX(wX##) = 1

X7G
1(w1##). This results in in bounds −FX′′(w) ≤

−F 1′′(w) × X9 and, rearranging terms, the right-hand side in the necessary inequality

(33) is multiplied by X18 < 1.

A.4 Proof of Theorem 2

In the following proofs we will need the following result.

Lemma 3 For any ε > 0 and the function Fε from Theorem 2

Fε ≤
(r + α)2

256σ2
Y (r + α + γ) r2C2

+ 1. (34)

Proof. Let w0 ∈ [0, wε] be the point at which Fε is maximized, F ′ε(w0) = 0. For

w ≥ w0 such that Fε(w) ≥ F (0) = 1 ≥ F (w), so that the drift of the relational capital

16



rw − (a(Fε(w))− c(a(Fε(w)))) is positive, we have

(r + α + γ)Fε(w) = F ′ε(w) (rw − [a(Fε(w))− c(a(Fε(w)))])− (r + α)2

2σ2
Y F
′′
ε (w)

≤ − (r + α)2

2σ2
Y F
′′
ε (w)

,

(35)

−F ′′ε (w) ≤ (r + α)2

2σ2
Y (r + α + γ)

,

where the equality follows from the fact that F ′′ε (w) ≥ − r+α
σ2
Y ε

(otherwse the right hand side

would fall short of 1, and so the left hand side). Since wε ≤ wEF = 1/8rC, it therefore

follows that

Fε(w0) ≤ Fε(w0)− Fε(wε) + 1 ≤ 1

2

(r + α)2

2σ2
Y (r + α + γ)

(
1

8rC

)2

+ 1

=
(r + α)2

256σ2
Y (r + α + γ) r2C2

+ 1.

The proof of the first part of the Theorem is analogous to the proof of Theorem 1.

The optimal policy function implied by 14 is given by

I∗ε (w) = − r + α

σ2
Y F
′′(w)

, if F ′′ε (w) ≥ −r + α

σ2
Y ε

(36)

I∗ε (w) = ε, if − 2
r + α

σ2
Y ε

< F ′′ε (w) < −r + α

σ2
Y ε

I∗ε (w) = 0. if F ′′ε (w) ≤ −2
r + α

σ2
Y ε

It is easy to establish that F ′′ε (0) = −2 r+α
σ2
Y ε

, since with any other value, the equation (14)

would be violated around zero. In what follows we establish that if there is w such that

F ′′ε (w) < −2 r+α
σ2
Y ε

, then F ′ε(w) << 0 and rw − (a(Fε(w))− c(a(Fε(w)))) ≈ 0. We claim

that this is enough to establish the proof of the Theorem. Indeed, we may define w′ε as

the first point such that F ′′ε (w′ε) = −2 r+α
σ2
Y ε

and F ′′ε (w) < −2 r+α
σ2
Y ε

in the right neighborhood

of (w′ε, wε], for some wε > w′ε. Note that, crucially, the policy I∗ε is continuous over

[0, w′ε). The proof of Proposition 6, with w = w′ε and w = wε yields a local SSE that

achieves (wε, Fε(wε)), with relational capital and incentive processes {wt}, {Fε (wt)}.

Given concavity of Fε, w
∗
ε −wε is small, as in the statement of the Theorem, establishing

the proof.

17



Consider w such that F ′′ε (w) < −2 r+α
σ2
Y ε

. Given quadratic costs, we have

(a(Fε(w))− c(a(Fε(w))))′ =
1

C
(1/2− Fε(w))F ′ε(w).

Thus, differentiating (14), we get40

F ′′ε (w) =
F ′ε(w)

(
α + γ + [a(Fε(w))− c(a(Fε(w)))]′

)
rw − a(Fε(w))− c(a(Fε(w)))

(37)

=
F ′ε(w)

(
α + γ + 1

C
(1/2− Fε(w))F ′ε(w)

)
rw − a(Fε(w))− c(a(Fε(w)))

≥ − F ′2ε (w)

2C|rw − a(Fε(w))− c(a(Fε(w)))|
, when F ′ε(w) ≤ 0

≥ − C1F
′2
ε (w)

C(rw − a(Fε(w))− c(a(Fε(w))))
, when F ′ε(w) ≥ 0

where C1 is the bound on Fε from Lemma 3. For an appropriate C2 > 0 this yields

F ′2ε (w)

|rw − a(Fε(w))− c(a(Fε(w)))|
≥ C2

ε
. (38)

On the other hand, equation (14) implies that

F ′ε(w) (rw − [a(Fε(w))− c(a(Fε(w)))]) = (r + α + γ)Fε(w) ≤ (r + α + γ)C1. (39)

Inequalities (38) and (39) imply that |rw − a(Fε(w)) − c(a(Fε(w)))| ≤ C3ε
1/3, with

C3 > 0. Since Fε (w) ≥ 1/2, in the case when F ′ε (w) ≥ 0 (so that the drift of relational

capital is positive), whereas Fε (w) ≥ limw→w∗ε Fε(w) = F (w∗ε) ≥ C4 > 0, in the case

when F ′ε (w) ≤ 0 (the equality follows from the boundary condition (12)) equation (14)

yields

|F ′ε (w)| = (r + α + γ)Fε (w)

|rw − a(Fε(w))− c(a(Fε(w)))|
≥ C5ε

−1/3. (40)

Since Fε is concave and bounded in [0, C1] , inequality (35) implies

w∗ε − w = O(ε1/3), when F ′ε < 0

w = O
(
ε1/3
)
. when F ′ε > 0

It is enough now to show that the case F ′ε(w) ≥ 0 is not possible. Note that since

w is small and rw − a(Fε(w)) − c(a(Fε(w))) positive, we have Fε(w) ≈ F (0) = 1. By

40Note that (14) implies F ′ε(w)× [rw − a(Fε(w))− c(a(Fε(w)))] ≥ 0.
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differentiating (37),

F ′′′ε (w) =

(
F ′ε(w)

rw − a(Fε(w))− c(a(Fε(w)))

)′ (
α + γ + (a(Fε(w))− c(a(Fε(w))))′

)
(41)

+
F ′ε(w)

rw − a(Fε(w))− c(a(Fε(w)))
(a(Fε(w))− c(a(Fε(w))))′′

>
F ′ε(w)

rw − a(Fε(w))− c(a(Fε(w)))
(a(Fε(w))− c(a(Fε(w))))′′

=sgn (a(Fε(w))− c(a(Fε(w))))′′ ,

where the inequality follows from the fact that F ′′ε (w) < 0 and

(rw − a(Fε(w))− c(a(Fε(w))))′ = r − 1

C
(1/2− Fε(w))F ′ε(w)

≈ r +
1

2C
F ′ε(w) > 0,

α + γ + (a(Fε(w))− c(a(Fε(w))))′ = α + γ +
1

C
(1/2− Fε(w))F ′ε(w)

≈ α + γ − 1

2C
F ′ε(w) < 0,

when ε is small enough. Finally,

(a(Fε(w))− c(a(Fε(w))))′′ =

(
1

C
(1/2− Fε(w))F ′ε(w)

)′
(42)

=sgn (1/2− Fε(w))F ′′ε (w)− (F ′ε(w))
2

≈ −1

2
F ′′ε (w)− (F ′ε(w))

2

≈ 1

4C

(F ′ε(w))2

rw − a(Fε(w))− c(a(Fε(w)))
− (F ′ε(w))

2
> 0,

when ε is small enough, where the last line follows from (37). This establishes that

F ′′ε (w0) ≤ −2 r+α
σ2
Y ε

implies F ′′′ε (w0) > 0, and so the case F ′ε(w
0) ≥ 0 is not possible. This

establishes the proof of the Theorem.

Observe also that on [0, w′ε] we have the bounds

F ′′ε (w) ≥ 2
r + α

σ2
Y ε

, (43)

F ′ε(w) ≤ F ′ε (0) ≤ 1

8rC
× 2

r + α

σ2
Y ε

,

where the second line follows from wEF = 1/8rC and F ′′ε (w) ≥ 2 r+α
σ2
Y ε

when F ′ε(w) ≥ 0.
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A.5 Proof of Theorem 3

Step 1. Fix ε > 0 and consider an ε−optimal local SSE {at, at}, together with the

processes {wt} , {Ft} , {It} and {Jt} that satisfy equations (9) (Proposition 2 and Theorem

2). In this step we show that as long as

Jt ≤
C (r + 2 (α + γ))

8 (r + α)
, ∀t (44)

then, for an appropriate X > 0 and any deviating strategy {ãt}, the relational capital at

any time τ ≥ 0 to the deviating agent is bounded above by

w̃τ (µ̃τ − µτ , wτ ) = wτ +
Fτ
r + α

(µ̃τ − µτ ) +X(µ̃τ − µτ )2. (45)

In the formula, wτ is the equilibrium level of relational capital, determined by (9), µ̃τ

are the correct beliefs, given strategies {ãt} and {at}, and µτ are the equilibrium beliefs,

given that both strategies are {at}, both determined by (2). Consequently, using the

bound with µ̃t = µt, the step establishes that local SSE strategies are globally incentive

compatible, as long as the bound (44) holds.

Fix a deviation strategy {ãt} and consider the process

vτ =

∫ τ

0

e−rs
(
ãt + at

2
− c(ãt)

)
dt+ e−rττ w̃(µ̃τ − µτ , wτ ),

where, from (2), the wedge process {µ̃t − µt} follows

d (µ̃t − µt) = (r + α) (ãt − at)dt− (α + γ) (µ̃t − µt) dt.

In order to establish that w̃τ bounds the relational capital under {ãt} and {at}, it is

enough to show that the process {vt} has negative drift. We have

e−rtdvt =

(
ãt + at

2
− c(ãt)

)
dt− r

(
wt +

Ft
r + α

(µ̃t − µt) +X(µ̃t − µt)2

)
+ (rWt − (at + c(at)))dt+ It × (dYt − µtdt)

+
µ̃t − µt
r + α

((r + α + γ)Ft − (r + α)Itdt+ Jt × (dYt − µtdt))

+

(
Ft

r + α
+ 2X(µ̃t − µt)

)
((r + α) (ãt − at)dt− (α + γ)(µ̃t − µt)dt) .
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Given that the drift of dYt−µtdt is (µ̃t−µt)dt, the drift of the e−rtdvt process equals

ãt − at
2

+ c(at)− c(ãt) + Ft(ãt − at)

+ (µ̃t − µt)2

(
Jt

r + α
−X (r + 2 (α + γ))

)
+ (µ̃t − µt)(ãt − at)2X (r + α)

≤ ãt − at
2

+ c(at)− c(ãt) + Cat(ãt − at)

+ (µ̃t − µt)2

(
Jt

r + α
−X (r + 2 (α + γ))

)
+ (µ̃t − µt)(ãt − at)2X (r + α)

= −C
2

(at − ãt)2 + (µ̃t − µt)2

(
Jt

r + α
−X (r + 2 (α + γ))

)
+ (µ̃t − µt)(ãt − at)2X (r + α) ,

where we used that c(a) = 1
2
a+ C

2
a2, and Ft(ãt− at) ≤ Cat(ãt− at), with equality in the

case at < A.

Note that when the matrix −C
2

X (r + α)

X (r + α) Jt
r+α
−X (r + 2 (α + γ))


has a positive determinant, then the trace is negative, and the matrix is negative semidef-

inite, guaranteing negative drift. Since

max
X

{
−C

2
×
(

Jt
r + α

−X (r + 2 (α + γ))

)
−X2 (r + α)2

}
=

C

2 (r + α)

(
C (r + 2 (α + γ))

8 (r + α)
− Jt

)
,

it follows that, indeed, when Jt is bounded as in (44), then w̃τ defined in (45) bounds the

relational capital, for X that maximizes the above expression.

Step 2. Fix ε > 0 and consider an ε−optimal local SSE {at, at}. In this step we

show that when CσY is sufficiently large, then for any wt the sensitivity Jt of relational

incentives is bounded as in (44). Together with step 1, this will establish the proof of

Theorem 3.

Recall from Proposition 6 and the discussion below that

Jt = J(wt) = F ′ε(w)× I∗ε (w).
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Let us bound I∗ε (w), in the case when F ′ε (w) > 0. (Since I∗ε ≥ 0, the bound (44) holds

in the case when F ′ε (w) ≤ 0.) Over the subset S ⊆ [0, wε) where F ′′ε (w) < − r+α
σ2
Y ε

, we

simply have I∗ε (w) = ε. Over the complement [0, wε)\S, where F ′′ε (w) ≥ − r+α
σ2
Y ε

, we have,

I∗ε (w) = − r + α

σ2
Y F
′′
ε (w)

=
2

r + α
{(r + α + γ)Fε(w)− F ′ε(w) (rw − (a(Fε(w))− c(a(Fε(w)))))}

≤ 2

r + α

{
(r + α)2

256σ2
Y r

2C2
+ r + γ + α +

r + α

4σ2
YCrε

1

8C

}
,

=
r + α

128σ2
Y r

2C2
+

2(r + γ + α)

r + α
+

1

16σ2
YC

2rε
=: I#

where we use the bound (34) on Fε, from Lemma 3, the bound F ′ε ≤ r+α
4σ2
Y Crε

from (43),

and the lower bound of − (aEF − c (aEF )) = −1/8C on the drift of relational capital.

Condition (44) thus boils down to

Jt = F ′ε(w)× I∗ε (w) ≤ r + α

4σ2
YCrε

× (ε+ I#) ≤ C (r + 2 (α + γ))

8 (r + α)
,

or,

ε+
r + α

128σ2
Y r

2C2
+

2(r + γ + α)

r + α
+

1

16σ2
YC

2rε
≤ C2 (r + 2 (α + γ))

2 (r + α)2 σ2
Y rε, (46)

which is satisfied when CσY is large enough. This concludes the proof of the step, end

of the first part of the theorem.

To verify the existence of non-trivial SSE, note that the policy function I (w) in the

proof of Proposition 3 equals zero at the extremes, and for any w ∈ (0, w) satisfies

I (w) ≥ −r + α

σ2
YD
≥ r + α

σ2
Y

2

2 + r + α + γ

(
1

16Cr

)2

≥ 1

256σ2
YC

2r
=: ε. (47)

Proposition 3 establishes that for ε as in (47) the supremum w∗ε of relational capitals

achievable in ε−optimal local SSE is strictly above zero, as long as (24) is satisfied, which

22



we reproduce below:

(r+α+γ)
2 + r + α + γ

2

(
r + α + γ

r
+

1

2
+ 2 (2 + r + α + γ)

(
r

r + α + γ

)2
)
≤ 1

512σ2
YC

2
.

(48)

Invoking (46) and (47), this local SSE is globally incentive compatible when

1

256σ2
YC

2r
+

r + α

128σ2
Y r

2C2
+

2(r + γ + α)

r + α
+

256σ2
YC

2r

16σ2
YC

2r
≤ (r + 2 (α + γ))

512 (r + α)2 ,

or

r + α + γ

r

1

256σ2
YC

2
+

(
r + α + γ

r

)2
1

128σ2
YC

2
+ 2(r + α + γ) + 16(r + α) ≤ 1

512
. (49)

For a given ratio r+α+γ
r

, inequalities (48) and (49) hold when, first, CσY is sufficiently

large and, second, r+α+γ is sufficiently small. This concludes the proof of the theorem.

A.6 Proofs for Section 4

Proof of Proposition 4.

Part i) Suppose γ = σµ = 0. We show that the supremum w∗ε of relational capitals

achievable in the ε−optimal local SSE is increasing in σ−1
Y , for every ε > 0. Note that

decreasing σY changes equation (15) in Proposition 6 only by decreasing the last term.

This means that if a pair of functions (F, I) satisfies the conditions of Proposition 6 for

some interval [w,w] and a given σY , then for any σ′Y with 0 < σ′Y < σY there is a function

I ≥ I such that the pair
(
F, I

)
satisfies the conditions of Proposition 6 for σ′Y . Applying

the result to the pair (Fε, I
∗
ε ) on the interval [0, wε] as in the proof of Theorem 2, for any

ε > 0, establishes the proof.

Part ii) Fix w > 0. Proof of part ii) of Proposition 3 establishes that a necessary

condition for w∗ ≥ w is inequality (33), reproduced below:

1 > 32D2C2r2σ
2
Y (r + α + γ)

(r + α)2
=

64326

18
C10r8

(
σY
r + α

)6

(r + α + γ)7w6. (50)

Recall also that, when σY is close to zero, γ is of order σ−1
Y (see equation (3)). Substituting,

the right hand side of (33) is of order σ−1
Y , when σY is close to zero. This establishes that
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w∗ ≤ w, when σY is sufficiently small.

Part iii). As a preliminary step, we show that a symmetric strategy profile {at, at}
is an SSE with associated relational capital process {wt} if and only if there is an L2

process {It} such that

dwt = (rwt − (at − c(at))) dt+ It × (dµt − [(r + α) 2at − αµt] dt) + dMw
t , (51)

where at = a((r + α) It), and {Mw
t } is a martingale orthogonal to {Yt}, and the transver-

sality condition E [e−rtwt]→t→∞ 0 holds.

The proof is identical to the first part of the proof of Proposition 2: since the process{
µt −

∫ t
0

[(r + α) 2as − αµs] ds
}

, scaled by σµ, is a Brownian Motion, it follows from

Proposition 3.4.14 in Karatzas [1991] that a process {wt} is the relational capital process

associated with {at, at}, defined in (6), precisely when it can be represented as in (51),

for some L2 process {It} and a martingale {Mw
t } orthogonal to {µt}.

As regards incentive compatibility, fix an alternative strategy {ãt} for player i and

note that the relational capital satisfies

E{ãt,at}τ

[∫ ∞
τ

e−r(t−τ)

(
ãt + at

2
− c(ãt)

)
dt

]
= E{ãt,at}τ

[∫ ∞
τ

e−r(t−τ)

(
ãt + at

2
− c(ãt)

)
dt+ wτ +

∫ ∞
τ

d
(
e−rtwt

)]
= wτ + E{ãt,at}τ

[∫ ∞
τ

e−r(t−τ)

(
ãt + at

2
− c(ãt)

)
dt+

∫ ∞
τ

e−rt (dwt − rwtdt)
]

= wτ + E{ãt,at}τ

[∫ ∞
τ

e−r(t−τ)

(
ãt − at

2
− c(ãt) + c (at) + It (r + α) (ãt − at)

)
dt

]
,

where the first equality follows from E{ã
i
t,a
−i
t }

τ

[
e−r(t−τ)wt

]
→ 0, as t → ∞ (given that

efforts are bounded), and the last one follows from E{ãt,at}τ [dµt − [(r + α) 2at − αµt] dt] =

(r + α)E{ãt,at}τ [ãt − at] . Since continuation value and relational capital differ by a con-

stant, it follows from this representation and convexity of costs that there exists no

profitable deviating strategy for partner i if and only if her effort process satisfies at =

a((r + α) It).

We are now ready to establish part iii) of the proposition. From representation (51)
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it follows that when wt ≥ ε > 0, then either the volatility satisfies Itσµ ≥ δ > 0, in order

to incentivize a strictly positive, more efficient effort, or the drift satisfies E{a
1
t ,a

2
t}

τ [dwt] ≥

δ > 0, to satisfy promise keeping (where δ depends on ε). It follows that if w0 > 0

then the process {wt} escapes to infinity with positive probability, which, given bounded

efforts, yields contradiction.

Proof of Proposition 5. Fix σµ > σ#
µ ≥ 0; we show that, for any ε > 0,

the corresponding suprema of relational capitals achievable in the ε−optimal local SSE

satisfy w#∗
ε ≥ w∗ε . The proof is very related to the proof of Proposition 4. One extra

complication is that now, changing the noise of the fundamentals also affects the boundary

conditions (16) in Proposition 6.

Specifically, note that decreasing σµ changes equation (15) in Proposition 6 only by

decreasing γ in the first term. Let γ# ≤ γ be the two corresponding gain parameters,

and let wε be the relational capital achievable in a ε−optimal local SSE with σµ, as in

the proof of Theorem 2, together with a pair of functions (Fε, I
∗
ε ) defined on [0, wε]. Let(

F#
ε , I

#∗
ε

)
extend the functions (Fε, I

∗
ε ) to the right by letting F#′′

ε (w) = F#′′
ε (wε) and

I#∗
ε (w) = I#∗

ε (wε), for w > wε, and let w#
ε be the first argument such that the boundary

condition (16) is satisfied. The existence of such w#
ε follows from the fact that at wε

condition (16) is violated, with the left-hand-side too small (due to γ# ≤ γ), and when w

increases and F#
ε decreases and approaches from above the value F (w) at which the drift

dies out, the left-hand-side is bounded away from zero, and the right-hand-side converges

to zero.

It follows that for small σ#
µ and γ#, the pair

(
F#
ε , I

#∗
ε

)
satisfies conditions of Propo-

sition 6 with left inequality in the differential equation (15). Thus, there is a function

I ≥ I#∗
ε such that the pair

(
F#
ε , I

)
satisfies the conditions of Proposition 6 on interval

[0, w#
ε ], with w#

ε > wε. This establishes the proof.
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B Alternative Organizational Structures

Here we present simple models to capture the two alternative organizational structures

presented in Section 4, and we provide formalizations for the relevant statements.

Career Concerns In some environments, although formal performance-contingent

contracts are impossible to write, the workers may still be motivated to work hard to

improve their reputation, that is by their own career concerns.

As in our main model, we are going to consider that production demands two agents’

efforts (see equation 1). We can interpret the unknown quality of the joint venture, σµB
µ
t ,

as the sum of two terms, capturing the quality of each worker. As in the main model,

the market only observes a joint profit signal,

dµt = (r + α) (a1
t + a2

t )dt− αµtdt+ σµ,1dB
µ,1
t + σµ,2dB

µ,2
t , (52)

dYt = µtdt+ σY dB
Y
t .

To simplify the analyzis, and in the spirit of Morrison and Wilhelm [2004] and of Bar-

Isaac [2007], we focus on partnerships between an established partner, σµ,1 = 0, and a

young partner, σµ,2 > 0. Finally, we capture the career concerns by assuming that each

worker is paid according to the reputation of the joint venture, µ̄
2
.

The following analysis and results are a direct consequence of Holmström [1999]. For

completeness, we include the argument below. For player 1, exerting effort will not affect

its reputation, hence we compute the marginal benefit of exerting effort for player 2.

Increasing effort creates a wedge in the beliefs, with the productivity of the joint venture

being above its reputation. In the future, the public news will be, on average, above

expectations, pushing up player 2’s reputation. The marginal benefit of effort is due to

the benefit of increase in reputation.

Formally, the wedge created by an additional ε effort, at any instant, has magnitude

ε(r + α).41 The marginal benefit of such wedge is given by ε(r + α) × γ/(r + α + γ) ×

1/2(r+α), where the second term is the expected discounted total effect of the wedge on

41More precisely, in the rest of this section, all the magnitudes that represent a wedge, marginal cost,
or marginal benefit of effort exerted over an instant should be scaled by dt.
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player’s reputation, and the third term is the marginal value of an increase in reputation,

given that each increase only slowly reverts to zero, and each worker captures only half

of the reputation. Hence the marginal benefit of effort is given by

marginal benefit of effort =
γ

2(r + α + γ)
.

It is clear that the marginal benefit of effort is increasing in γ, and thus improved

monitoring facilitates the provision of effort, as claimed.

Contract. In the career concerns model we assumed that formal performance-

contingent contracts were unavailable. We now relax this assumption. We consider

an environment in which these contracts are available, although at a cost. Consider a

principal that hires two workers for a joint task. To focus on the incentives provided by

the contract and not by the relationship between the two employees, we consider that one

of the positions is filled with a stream of workers hired by a short term contract, while the

other is a long term employee. As in our main model, the productivity, µt, depends on the

joint venture quality and on both workers efforts. We restrict attention to linear wages

schemes that are stationary with respect to the unexpected news, wt = A+B ∗(dYt−µt).

We introduce contract imperfection in the model by assuming that the cost of a wage

scheme is quadratic on the realized payment, with parameter δ; that is, for a transfer wt,

the principal incurs a cost of wt + δ(wt)
2.

For a fixed contract, the marginal benefit of effort follows from the fact that exerting

effort today generates a higher than expected fundamentals, and hence the future stream

of news will be overall positive, giving the employee a positive stream of payments.

Formally, the marginal benefit of effort is given by B(r+α)
r+α+γ

, where the numerator follows

from how additional effort creates a wedge between the actual productivity of the venture

and the market expected productivity; and the denominator follows from the discount of

such wedge. Note that for a fixed contract, the marginal benefit of effort decreases with

γ, however the optimal contract is obviously not fixed.

The expected marginal cost of effort that the principal incurs in implementing a

contract is given by δB2σ2
Y . Hence for whatever marginal benefit of effort, mbe, that the
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principal wants to incentivize, the expected cost of such contract is δσ2
Ymbe

2( r+α+γ
r+α

)2.

Note that, for any marginal benefit of effort, the cost is increasing in the monitoring

imperfection, giving the result claimed in the main text.

Formally, we have that the derivative is given by

∂

∂σY
(
r + α+ γ

r + α
)σY =

∂

∂σY
(σY + σY

γ

r + α
) = 1 +

1

r + α

∂

∂σY
(σY γ)

= 1 +
1

r + α

∂

∂σY
(
√
α2σ2

Y + σ2
µ − ασY ) = 1− α

r + α
+

α

r + α
(

ασ√
α2σ2

Y + σ2
µ

) >
r

r + α
> 0.

C General Model for Section 5

Suppose that an equilibrium is characterized by a system of equations governing the

movement of the value G and the state variables θ ∈RM ,

dGt = [h1(θt, It)×Gt − h2(θt, It)]dt+ IGdBt, (53)

dθt=f(θt,Gt, It)dt+ σ(θt, Gt, It)dBt,

for some control processes IG ∈ R, It ∈ RN that are progressively measurable with respect

to the Brownian Motion {Bt} , for Lipschitz continuous functions f, h1, h2, and σ, with

h1 positive and bounded away from zero, and for initial values θ0, G0.

Importantly, the only distinction between the value and the state variables in the

system (53) is that value has drift linear in itself and has unrestricted volatility. Crucially,

just as in the main model considered in the paper, value may affect the law of motion

of the state variables. Unlike in the main model, the system may have multiple state

variables, and the functions f, h1, h2, and σ are only assumed to be Lipschitz. In this

formulation, we have the following analogues of Propositions 6 and 7. For any convex set

S with a differentiable boundary and s ∈ ∂S let N(s) be the outward normal vector to

∂S an s.
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Proposition 12 Consider a compact convex subset S ⊂ RN with a differentiable bound-

ary ∂S such that θ0 ∈ S, together with a continuous function I : S → RN and a C2

strictly concave function G : S → R that satisfy the differential equation

h1(θ, I(θ))×G(θ) = h2(θ, I(θ)) +∇G(θ) · f(θt,G(θ), I(θ))

+
1

2
σT (θ,G(θ), I(θ)) · H(G) · σT (θ,G(θ), I(θ)),

(54)

where H(G) is the Hessian of G′s partial second derivatives. Suppose also that ∂S =

∂SE ∪ ∂SR, where each subset is measurable, and each boundary point θ ∈ ∂SE together

with G (θ) is achievable by an equilibrium, whereas each θ ∈ ∂SR together with G(θ)

satisfies

f(θt,G(θ), I(θ))T ·N(θ) ≤ 0,

σT (θ,G(θ), I(θ))T ·N(θ) = 0.

Then, for every θ ∈S there is an equilibrium achieving (θ,G (θ)).

Proof. Functions G, I, defined on S, as well as f and σ are Lipschitz continuous. Let τ

be the stopping time of a process {θt} reaching ∂SE. The existence of a weak solution

{θt}t≤τ to the equations in (53), with It = I(θt) and Gt = G(θt) and θ0 = θ0 ∈ S given,

follows from, e.g., Karatzas [1991], Theorem 5.4.22. It follows from Ito’s formula that

the process Gt = G (θt) satisfies the first equation in (53). The pair of processes {θt} and

{Gt} is extended to t > τ by equating them with processes that characterize equilibria

corresponding to (θτ , G(θτ )). This completes the proof.

Proposition 13 Let E(θ) parametrize the supremum of G achievable in equilibrium,

parametrized by θ ∈S ⊂ Rn. For every λ > 0 there is δ > 0 such that no concave solution

Gλ of the differential equation

Gλ(θ) = sup
I

1

h1(θ, I)

{
h2(θ, I) +∇Gλ(θ) · f(θt,Gλ(θ), I)

+
1

2
σT (θ,Gλ(θ), I) · H(Gλ) · σT (θ,Gλ(θ), I)

}
+ λ,

(55)
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on S, with |∇Gλ| ≤ 1/λ, satisfies both of the following conditions:

i) Gλ(θ) = E(θ), for all θ ∈ ∂S,

ii) 0 < E(θ)−Gλ(θ) ≤ δ. for θ ∈ intS.

Proof. The proof by contradiction is completely analogous to the proof of Proposition

7. In particular, for the processes of {θt} and {Gt} that characterize an equilibrium

achieving θ0 and G0, with θ0 ∈ intS and 0 < G0 − Gλ(θ) ≤ δ, the distance function

D(θt, Gt) = Gt −Gλ(θt) satisfies, for appropriate process {It}

E [dD(θt, Gt)]

dt
= h1(θt, It)×Gt − h2(θt, It)−∇Gλ(θt) · f(θt,Gt, I)

− 1

2
σT (θt, Gt, I) · H(Gλ) · σT (θt, Gt, I)

≥ h1(θt, It)×Gt − h2(θt, It)−∇Gλ(θt) · f(θt,Gλ(θt), I)

− 1

2
σT (θt, Gλ(θt), I) · H(Gλ) · σT (θt, Gλ(θt), I)−

λ

2

≥ h1(θt, It) (Gt −Gλ(θt)) + λ− λ

2
> h1(θt, It)×D(wt, Gt),

with the inequalities following for small enough δ (from Lipschitz continuity of the pa-

rameter functions and the condition ii) in the proposition), and the definition of Gλ(θ).

As in the proof of Proposition 7, the exponential expected growth rate of the distance D

leads to violation of condition ii), establishing contradiction.

The two propositions jointly provide the HJB equation that characterizes the differ-

entiable boundary of the supremum of Gt achievable in an equilibrium,

G(θ) = sup
I

1

h1(θ, I)

{
h2(θ, I)+∇G(θ)·f(θt,G(θ), I)+

1

2
σT (θ,G(θ), I)·H(G)·σT (θ,G(θ), I)

}
,

(56)

which is equation (54), in which the right-hand-side is pointwise maximized, and, at the

same time, it is equation (55), with λ = 0. This is an analogue of equations (11), (15), and

(17) in the main model in the paper. We note that that complete characterization of the

equilibria, which would have to include the analysis of the boundary conditions, regularity

properties of the boundary, as well as the solution of partial differential equation (56) is
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beyond the scope of this paper.

In the following section we consider special cases of the general model 53. In each

case, Gt is the marginal benefit of increased fundamentals, and θt includes the level of

fundamentals µt (or public estimate µt), continuation value Wt (or relational capital wt)

of one or more players, or marginal benefit of increased beliefs about fundamentals Ht.

For each of the models we present the HJB differential equation (56).

C.1 Special Cases

The central features of the main model studied in this paper are the persistent effect

of effort and the imperfect state monitoring. For tractability, our game and equilibria

are symmetric, and the single state variable—the (expected) fundamentals µt—enters

additively in the value of the partnership (see (52)). Here we present several extensions,

together with the corresponding HJB equations. Those are special cases of the mathe-

matical model (53) and the HJB equation (56).

Capital Accumulation. An important element for the provision of effort in teams,

which we ignore in the main model, is that effort today may change the productivity of

effort in the future. For instance, when developing a new product, early efforts to design a

better product affect the productivity of later marketing efforts. To incorporate that, we

allow the evolution of fundamentals µt to depend in a non-linear and non-separable way

on the level of fundamentals µt and on effort at. We abstract from learning by assuming

away the production noise, σµ = 0, and, thus, µt = µt on the equilibrium path.42 The

fundamentals are not observed by the partners, σY > 0. Specifically, the equations in

(52) generalize to:

dµt = g(µt, a
1
t + a2

t )dt,

dYt = µtdt+ σY dB
Y
t ,

where g is a differentiable function that is concave in the second argument.

42The non-linear evolution of fundamentals in this model would require non-linear learning, going
beyond the Kalman-Bucy filter.
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When g is nonlinear, one may not subtract relational capital wt from continuation

value Wt, nor separate relational incentives Ft from the total marginal benefit of increased

fundamentals, Gt. Note that, in the main model, we have wt = Wt − µt
2(r+α)

and Ft =

(r + α)Gt − 1/2. Analogous to Proposition 2, Wt and Gt now follow:

dWt =
(
rWt −

(µt
2
− c(at)

))
dt+ It × (dYt − µtdt) + dMw

t , (57)

dGt =
(
r − g1(µt, a

1
t + a2

t )
)
Gtdt−

(
1

2
+ It

)
dt+ Jt (dYt − µtdt) + dMG

t .

The supremum of G across a local SSE depends on both the continuation value and the

fundamentals, and the corresponding HJB equation (56) for the system (57) is

(r − g1(µ, 2a))×G(W,µ) = (58)

maxI

{
1

2
+ I +GW × (rW − (µ/2− c(a))) +Gµ × g(µ, 2a) +

GWW

2
σ2
Y I

2

}
,

where the locally optimal effort a = a(G, µ) satisfies c′(a(G, µ)) = g2(µ, 2a(G, µ))×G.

Oligopoly. Alternatively, we can generalize the model’s payoff structure rather than

changing the evolution of the fundamentals. This allows the model to speak to different

economic settings, which we highlight with a simple model of an oligopoly. At any time,

each firm i chooses to produce a quantity ait, which adds up to the total stock of own

goods produced, µit. At the same time, a fixed fraction α of total production is sold, with

the mean price (inverse demand function) linearly decreasing in the quantity sold. Firms

publicly observe only the price.43 Formally, with πit representing the cumulative profits

of firm i until time t, we have44

dµit = (r + α)aitdt− αµitdt,

dYt = (p− α(µ1
t + µ2

t ))dt+ σY dB
Y
t ,

dπit = αµitdYt − c(ait)dt.

The main difference between this model and the continuous time limit of the model

43Each firm also observes the fraction α of own goods sold, but this does not provide any information
about the competitor.

44For simplicity, we keep the same scaling constants as in the body of the paper.
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analyzed by Sannikov and Skrzypacz [2007] is that, here, the expected price at time

t, dYt, depends on the stock of goods produced in the past and gradually sold, rather

than only on the current production (all of which is sold). The main difference with

the main model in Section 2 of this paper is that, in a symmetric equilibrium with

a1
t = a2

t , µ
1
t = µ2

t =: µt/2, at any t, the flow revenue of firm i is 1
2
αµtdYt, rather than

1
2
dYt. (Additionally, the profits would differ in asymmetric equilibria.)

The continuation value function Wt and the marginal benefit of increased own stock

of goods Gt in a symmetric equilibrium satisfy

dWt =

(
rWt −

(
1

2
αµt(p− αµt)− c(at)

))
dt+ It × (dYt − (p− αµt)dt) + dMW

t , (59)

dGt = (r + α)Gtdt+ (−αIt + α(p− αµt))dt+ Jt × (dYt − (p− αµt)dt) + dMG
t ,

and the corresponding HJB equation (56) for the system (59) is:

(r + α)×G(W,µ) = max
I

{
− αIt + α(p− αµt)+

GW ×
(
rWt −

(
1

2
αµt(p− αµt)− c(at)

))
+Gµ × (2(r + α)a− αµ) +

GWW

2
σ2
Y I

2

}
,

where a = a(G) is the locally optimal action that satisfies c′(a(G)) = (r + α)×G.

Asymmetric game and PPE. In joint ventures, partnerships, and teams, the rela-

tionship may be asymmetric: an individual may be more or less productive than another;

partners may not share rewards equally; and partners may have different costs for exerting

effort. To consider a general team production, we would need to extend our framework to

include asymmetric PPE. Towards that goal, consider a partnership model with N ≥ 2

players, with

dµt = −αµtdt+ g(a1
t , a

2
t , ..., a

N
t )dt,

dYt = µtdt+ σY dB
Y
t ,

dπit = βidYt − ci(ait)dt,

where g is differentiable and concave in each argument; each individual i = 1, 2, ..., N has

a cost of effort ci as in the main model; and each i receives a fixed share of the profit βi.
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The relational capitals wi and the marginal benefit of increased fundamentals Gi follow

dwit =

(
rwit −

(
g(a1

t , a
2
t , ..., a

N
t )

r + α
− ci(ait)

))
dt+ Iit × (dYt − µtdt) + dMwi

t , (60)

dGit = (r + α)Gitdt−
(
βi + Iit

)
dt+ J it × (dYt − µtdt) + dMGi

t .

For a model with two players, the HJB equation (56) that characterizes the supremum

G1 of the marginal benefit of increased fundamentals for player 1 as a function of two

relational capitals and marginal benefit G2 of increased fundamentals for player 2, as in

(60) is

(r + α)×G1(w1, w2, G2) = (61)

maxI1,I2,J2


β1 + I1 +G1

w1 ×
(
rw1 − g(a1,a2)

r+α + c1(a1)
)

+G1
w2 × (rw2 − g(a1,a2)

r+α + c2(a2))

+G1
G2

(
(r + α)G2 −

(
β2 + I2

))
+ β1

[
I1 I2 J2

]
H(G1)

[
I1 I2 J2

]T
 ,

where H(G1) is the Hessian of partial second derivatives of G1, and the locally optimal

efforts ai = ai(G1, G2) satisfy ci′(ai(G1, G2)) = gi (a
1 (G1, G2) , a2 (G1, G2))×Gi.

Selling the partnership and a nonstationary model. An alternative interpre-

tation of a partnership unraveling is that the partners sell it. If the venture’s market

value is the value of its fundamentals, partners part with it when relational capital and,

thus, their value added dries up. Realistically, the market value of a venture may well

exceed its fundamentals’ value. In this case, if partners cannot commit not to sell the

partnership, the scope for incentives diminishes.

For example, when the market offers a fixed markup m above the fundamentals’ value,

the relational capital may not decrease below this level. Formally, the left boundary

condition in equation (11) changes, so that w ≥ m, in any local SSE.

When the market’s markup is a fixed fraction of the fundamentals’ value—say, m =

2µ—the boundary condition includes both the fundamentals’ value and relational capital,

so that w ≥ 2µ. This requires adding the fundamentals’ value as the second state variable

in the equation, as in (58), even with the additive formulation of Section 2.

Finally, the partnership might unravel exogenously, becoming less efficient in pro-
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ducing output over time. More broadly, we may consider a nonstationary model of

partnership, in which all the parameters—depreciation of capital, αt; individual cost of

effort, ct; marginal effect of effort on fundamentals (r + α in the main model, see 52),

Kt; production and observation noises, σµt and σY t; etc—change deterministically over

time. Formally, this would require introducing time as an additional state variable. The

processes described in Proposition 2 change so that all parameters are indexed by time,

whereas the HJB equation for relational incentives becomes

(r + αt + γt)F (w, t) =

max
I

{
Kt × I + Fw(w, t) (rw − (a− ct(a))) + Ft(w, t) +

Fww(w, t)σ2
Y t

2
I2

}
,

with effort a = a(F ) defined in (8).45

45In case of the nonstationary learning, it follows from the Kalman-Bucy filtering equations (see Liptser
and Shiryaev [2013]) that the equilibrium posterior variance about the fundamentals, σ2

t , and the gain
parameter, γt, satisfy σ2′

t = −2αtσ
2
t + σ2

µt − γ2t σ2
Y t and γt = σ2

t /σ
2
Y t, with an exogenous prior variance

σ2
0 .
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