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Abstract

We study a continuous-time model of partnership with persistence and imperfect

state monitoring. Partners exert private efforts to shape the stock of fundamentals,

which drives the profits of the partnership, and the profits are the only public

signal. The optimal strongly symmetric equilibria are characterized by a novel

differential equation that describes the supremum of equilibrium incentives for any

level of relational capital. Under (almost) perfect monitoring of fundamentals, the

only equilibria are (approximately) stationary Markov. Imperfect monitoring helps

sustain relational incentives and increases the partnership’s value by extending the

relevant time horizon for incentive provision. The results are consistent with the

predominance of partnerships and relational incentives in environments where effort

has long-term and qualitative impact and in which progress is hard to measure.
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1 Introduction

Partnerships are among the main forms of organizing economic activity. Characterized

by joint ownership, partnerships are common among individuals and businesses and con-

stitute one of the dominant forms of structuring a firm—along with corporations and sole

proprietorships. Furthermore, partnerships embody the incentive problem of motivating

members to exert private effort and contribute to the common good, which is common

to many organizations.1

The ongoing, dynamic nature of joint ownership complicates the incentive problem

in a partnership. As an example, consider a start-up. On a daily basis, each partner

devotes effort to improving the venture’s fundamentals: upgrading the quality of the

product; broadening the customer base; facilitating access to external capital; improving

the internal organization; and more. Each of these fundamentals evolves over time, shaped

by the partners’ current and past efforts, and by the circumstances. Moreover, none of

them needs to be directly observed by the partners, who see only how the fundamentals

are gradually reflected in the shared profits, customer reviews, or internal audits. At the

same time, the ongoing nature of joint ownership offers unique opportunities to solve the

incentive problem: it fosters relational incentives. A partner has incentives to work hard

not only to boost profits but also to boost observable outcomes, morale, and, ultimately,

to increase the future effort choices of the partners.

In this paper, we analyze incentives in a continuous-time model of partnership, with

a persistent, stochastic state—the fundamentals—that is driven by the partners’ actions

and is imperfectly monitored by them. We provide a novel ordinary differential equation

that characterizes the upper boundary of equilibrium incentives and the supremum of

partnership values, in a strongly symmetric equilibrium. Our main substantive contri-

bution is to identify a new channel through which imperfect monitoring of a persistent,

1According to the IRS data, in 2015 partnerships made up over 10% of all U.S. businesses,
and accounted for over 25% of total net business income; see https://www.irs.gov/statistics/

soi-tax-stats-integrated-business-data, Table 1. More broadly, teamwork, which shares the cen-
tral feature of collective rewards and free-riding, was utilized in close to 80% of U.S. businesses at the
turn of the century; see Lazear and Shaw (2007).
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stochastic state may increase equilibrium payoffs. If persistent fundamentals are perfectly

monitored, the partnership cannot provide relational rewards at the highest equilibrium

continuation value—i.e. the bliss point—and the relational incentives unravel, or nearly

so when fundamentals are monitored closely. Imperfect monitoring benefits partners in

that it allows future relational rewards to motivate today’s effort, alleviating the incen-

tive problems at the bliss point. The results are consistent with the predominance of

partnerships and relational incentives in environments in which effort has long-term and

qualitative impact and in which progress is hard to measure.

In our continuous-time model, at any point in time, two partners privately exert

costly effort and evenly split the profits of their venture. Persistent fundamentals evolve

stochastically, driven by the sum of efforts, and, in turn, equal the expected profit flow.

In the model, neither efforts nor fundamentals are observable and profits, which follow a

Brownian diffusion, are the partners’ only publicly available information. Our minimal

monitoring structure does not allow the signals to separately identify each partner’s

effort (Fudenberg, Levine, and Maskin (1994)) and, consequently, we focus on strongly

symmetric equilibria (SSE).

A partner’s effort increases the fundamentals of the partnership and, thus, profits in

the future. This benefits her in two distinct ways. First, she benefits directly by capturing

half of the increased profits. In our model, those Markov incentives are constant, resulting

in a unique, stationary Markov equilibrium (Proposition 1). Second, the increased profits

affect the partners’ effort decisions, such as when partners coordinate on relatively efficient

(inefficient) efforts after surprisingly high (low) profit realizations, indicative of high (low)

past efforts. These relational incentives constitute the key focus of this paper.

Our environment combines persistent effects of effort and imperfect state monitoring.

Together, these two elements affect the incentives in a partnership by lengthening the

time horizon for incentive provision. If the current profits depend only on current ef-

forts (i.e., in a standard imperfectly public monitoring repeated game) or if fundamentals

are perfectly monitored (i.e., in a standard stochastic game), then the rewards must be

provided instantaneously. This is because an increased effort in a period brings about
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unexpectedly good news (higher than expected profits in the repeated game and funda-

mentals in the stochastic game) only in that same period. Our main model lies outside of

those two limiting environments, and hence signals indicating an increased effort today

are spread over time. As a consequence, rewards awarded for unexpectedly high profits

in the future provide incentives to exert effort today. This change has a dramatic impact

on the provision of relational incentives, as we discuss below.

We show that with persistent effect of effort, poorer monitoring may improve rela-

tional incentives and, thus, benefit the partnership. The first part of the argument is

specific to relational incentives: relational rewards must take the form of a promise of

an improved future relationship. However, at the highest equilibrium continuation value

for the partners, i.e. when the relationship is at its bliss point, no relational rewards

are available. The second part of the argument is that over a short interval of time, the

information in profits about the efforts is imprecise. Hence, incentives cannot be provided

solely with punishments, as this would be used mistakenly too often. Taken together,

when the time horizon for incentive provision is short, effort cannot be incentivized near

the bliss point of the relationship and the construction of relational incentives essentially

unravels. We show that, in contrast, with poorer monitoring, nontrivial relational in-

centives are possible. In the absence of immediate rewards, partners are incentivized to

work at the bliss point by future rewards, accruing once the continuation value of the re-

lationship drifts down. While the impossibility of relational incentives in continuous-time

partnerships and cartels has been attributed to the high frequency of actions (see San-

nikov and Skrzypacz (2007, 2010)), our results indicate that it stems from the assumption

of perfect state monitoring.

The effects of relational incentives on effort dynamics and comparative statics of part-

nership value go beyond the benefit of poor monitoring. First, we show that following

good outcomes (higher profits), partners increase their efforts when the value of the rela-

tionship is low and close to unraveling, but decrease efforts when the value is high, and

good outcomes push it closer to the bliss point with a vanishing flow of relational incen-

tives (“rallying and coasting”). Second, the impact of outcomes on effort is decoupled
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from their impact on expected fundamentals. As a consequence, an established partner-

ship may unravel following a short spat of bad outcomes, with hardly any effect on its

expected fundamentals (“Beatles’ break-up”.) Third, we show that besides the monitor-

ing precision, the persistence of effort and uncertainty about the partnership’s quality

are key factors shaping the time window for the provision of relational incentives and

the partnership value. Relational incentives vanish in partnerships with transient effects

of effort, as when the partners manage the venture following well-established routines,

rather than making strategic decisions for the future. Moreover, less uncertainty about

the quality of the partnership is always beneficial to the partners. Overall, the effects

that the informational environment has on relational incentives contrast with the opposite

effects it would have on career concerns and reputational incentives. Partnerships thus

have an edge in environments that favor established ventures, and in which the effects of

effort are long-lived and hard to measure or quantify (such as in the professional sector,

Levin and Tadelis (2005)).

The possibility of nontrivial relational incentives requires a novel method to character-

ize the optimal incentive provision in an environment with persistence. The method we

propose is based on characterizing the upper boundary of relational incentives achievable

in a local SSE, under local incentive constraints, as a function of the expected value of

future efforts (relational capital, an equivalent of continuation value in an i.i.d. setting).

Theorem 1 shows that the upper boundary of incentives satisfies a version of the HJB

ordinary differential equation and provides the appropriate boundary conditions. Theo-

rem 2 shows, roughly, that a modified boundary is self-generating (as in (Abreu, Pearce,

and Stacchetti, 1990)) and defines a near-optimal local SSE.

One difficulty in our approach, with incentives as the value function, is that the law of

motion of the state variable (relational capital) depends, via effort chosen, on the level of

the value function. While the dependence is not allowed in standard stochastic control, we

verify that the characterization of the boundary in the form of the HJB equation is valid.2

2We are aware of abusing the terminology. Formally, the optimality equation is not an HJB equation,
as the state variable depends on the objective function. However, the optimality equation has the exact
form of the HJB equation, with incentives F equal to the point-wise maximum, over all policies, of the
expected flow of incentives, plus the stochastic differential operator applied to function F . We believe
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Another difficulty is familiar in the literature; in Theorem 3, we provide conditions on the

primitives so that the constructed strategies are not only locally, but globally incentive-

compatible.

1.1 Related Literature

This paper belongs to the literature on free-riding in groups, in dynamic environments.3

We consider a canonical partnership model in the spirit of Radner (1985) and Radner,

Myerson, and Maskin (1986), who first showed the inefficiency of equilibria in partner-

ships. Our main contribution is to provide a tractable solution of a partnership model

that includes persistence and imperfect monitoring of the state, and to show that it can

sustain nontrivial relational incentives while providing rich equilibrium dynamics (in con-

trast to ‘bang-bang” results, see Abreu, Pearce, and Stacchetti (1986)) and comparative

statics. Below we relate our construction of relational incentives to the impossibility re-

sults in the literature; relate it to the provision of incentives in the literature on models

with hidden states; discuss how our method departs from standard stochastic control and

relates to previous work in dynamic contracts and continuous-time games; and discuss

the literature on partnerships on broader informational contexts.

Our results provide a novel rationale for the impossibility of relational incentives found

in the literature. Abreu, Milgrom, and Pearce (1991) and Sannikov and Skrzypacz (2007,

2010) show how frequent interactions may have a detrimental effect on the provision of

incentives. In particular, the model of partnership or collusion in Sannikov and Skrzypacz

(2007) has either no persistence or a perfectly monitored state and the impossibility is

attributed to the fact that, in a discrete-time approximation of a Brownian motion,

news arrive and actions are taken frequently.4 We show that the impossibility is not

inherent to continuous-time modeling and is a consequence of the monitoring structure.

that our results are best viewed as extending stochastic control methods to allow for such dependency.
3See Olson (1971), Alchian and Demsetz (1972), Holmstrom (1982), as well as Legros and Matthews

(1993) and Winter (2004) for seminal contributions in static settings.
4See Faingold and Sannikov (2011) and Bohren (2018) for related impossibility results with one long-

lived player in a competitive market setting. See, also, Sadzik and Stacchetti (2015) for the discrete-time
approximation of the Brownian Principal-Agent, rather than the partnership model.

5



More broadly, while a number of papers establish that better information may have a

detrimental effect on the provision of incentives, our contribution is to identify a novel

channel for the negative effect of better monitoring on relational incentives, i.e. the

shortening of the time horizon for incentives.5

The provision of incentives in a partnership of unknown quality relates to the litera-

tures on career concerns (see Holmström (1999) and Cisternas (2017)) and on experimen-

tation in teams (see Bolton and Harris (1999), Georgiadis (2014), and Cetemen, Hwang,

and Kaya (2020)). In career concerns models, equilibrium play depends only on beliefs

about an exogenous (Markov) state;6 the literature on experimentation in teams studies

the effects of payoff or information externalities on incentives and focuses on Markov

equilibria as well. Our paper is complementary: It has a production technology that is

independent of history, with constant Markov incentives. Our primary focus is, thus, to

characterize the provision of relational incentives in equilibrium, going beyond Markov

equilibria. In a similar vein, Hörner, Klein, and Rady (2022) investigate relational incen-

tives however their focus is on the experimentation in teams model.

While persistence is a pervasive feature of the real world, the literature on dynamic

contracting has long recognized how it complicates the accounting of incentives or verify-

ing global incentive compatibility (see Jarque (2010), Williams (2011), Prat and Jovanovic

(2014), Sannikov (2014), Prat (2015), DeMarzo and Sannikov (2016), and He et al. (2017)

for Brownian models like ours). Our solution method departs from the techniques used

in this literature as, in our game setting, incentives are not treated as a state variable

but as a maximized objective. Our HJB characterization, which allows for the evolution

of the state variables to depend on the level of the value function, is related to the HJB

characterization in Sannikov (2007), which allows the dependence on the slope of the

5In a non-relational environment, in a model of non-contractible performance measures, better moni-
toring can exacerbate the principal’s exploitation motive (see Zhu (2023)) while in Cetemen, Hwang, and
Kaya (2020), limited feedback may help partners by mitigating the ratchet effect. Similarly, in a linear
Gaussian rating model of Hörner and Lambert (2021), Bonatti and Cisternas (2020) show that putting
relatively too much weight on old signals about a customer may mitigate the ratchet effect and benefit
the firm (see also Ball (2022)).

6Specifically, Cisternas (2017) provides a differential equation also for the stock of incentives, just as
in this paper, but in a differentiable Markov equilibrium, as a function of public beliefs about the state.
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value function, in a repeated game setting. With an eye on extending the analysis to

stochastic games with imperfect monitoring, Faingold and Sannikov (2020) and Bernard

(2023) focus on games which, unlike a partnership studied here, satisfy identifiability

conditions, allowing players to identify and punish possible individual deviators. As an

additional technical contribution, we provide conditions on the primitives of the model

for the global incentive compatibility, guaranteeing that the solution of the relaxed prob-

lem is fully incentive-compatible (see Williams (2011), Edmans et al. (2012), Cisternas

(2017), and Di Tella and Sannikov (2021) for related results).7

Finally, we interpret our results as providing a rationale for the prevalence of part-

nerships in industries with poor monitoring of the venture’s progress. In particular,

as documented by Von Nordenflycht (2010), “opaque” quality is a key characteristic of

the knowledge-intensive environment of the professional sector, where partnerships are

prevalent.8 Our results are related to Levin and Tadelis (2005), who rely on partnership’s

comparative advantage in industries where employee quality is hard to evaluate, and to

Morrison and Wilhelm (2004), who focus on partnership’s impact on fostering mentorship

relations. In contrast to these, we focus on the incentive provision for partnerships given

imperfect monitoring of its quality.

2 Framework

2.1 Model

Two partners, who are risk-neutral and discount the future at a rate r > 0, play the

following infinite horizon game: At every moment in time, t ≥ 0, each partner i chooses

effort ait from an interval [0, A].9 Time t total effort contributes to the stock of funda-

7Zhu (2013) and Grochulski and Zhang (2023) face similar problems to us in constructing contracts
based on “Sticky Brownian Motion”, such as our relational capital with volatility vanishing discontin-
uously at the boundary (see Lemma 2); see also Engelbert and Peskir (2014) for the related existence
results.

8See Empson (2001) and Broschak (2004) for further references.
9The upper bound on the effort is used to guarantee boundedness of continuation value in Propositions

1 and 3, part iii). In all simulations, as well as in Theorem 2, the bound A is large enough so that
equilibrium efforts are interior.
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mentals of the partnership, µt, which depreciates over time at a constant rate α > 0. At

any point in time, the stock of fundamentals is the mean of the partnership flow profits

dYt,

dµt = (r + α) (a1t + a2t )dt− αµtdt+ σµdB
µ
t , (1)

dYt = µtdt+ σY dB
Y
t ,

where {Bµ
t } and {BY

t } are two independent Brownian Motions, σµ, σY ≥ 0.10 The multi-

plicative constant, r+α, in (1) normalizes the total discounted marginal benefit of effort

to one, regardless of the depreciation rate of the fundamentals or of the discount rate.11

Finally, profits are the only publicly observable signal.

Exerting effort a entails a private flow cost c (a), where c(·) is a twice differentiable,

strictly convex cost of effort function. Throughout the paper, we normalize c(0) = 0

and c′(0) = 1
2

(see Proposition 1) and, in Sections 3.1 and 4, we further restrict the cost

function to be quadratic. Finally, at each point in time, partners split the profits evenly.

Thus, given effort choices of both partners, a player’s continuation payoffs are given by

W i
τ = E{a

1
t ,a

2
t }

τ

[∫ ∞
τ

e−r(t−τ)
(µt

2
− c(ait)

)
dt

]
.

Aside from the continuous-time modelling, our partnership game has three features

that extend both the repeated game and the stochastic game framework: effort has per-

sistent effect, state is imperfectly monitored, and partners learn about the fundamentals.

Specifically, fundamentals—which are the state variable in the game—change only grad-

ually over time driven by the efforts of the partners. Persistence of fundamentals implies

that actions have a persistent effect: fundamentals, and, thus, also the profit today de-

pends on the integral of efforts at any previous time,

µτ = e−ατµ0 +

∫ τ

0
e−α(τ−t)(r + α)

(
a1t + a2t

)
dt+ σµ

∫ τ

0
e−α(τ−t)dBµ

τ . (2)

10Unless specified explicitly, all processes in this paper are indexed by t ≥ 0. We require that either
σY or σµ is strictly positive, to avoid the familiar complications in defining a continuous-time strategy
in a game with perfect monitoring.

11The normalization simplifies the statements of the results. We verify in the proof of Proposition 2
that the comparative statics results with respect to α and r continue to hold without the normalization.

8



This contrasts with the repeated game framework, in which today’s fundamentals and

profits depend only on today’s efforts. Secondly, unlike in a stochastic game, fundamentals

need not be observed by the partners, who observe noisy profit signals. Together, the two

features imply that in contrast to the repeated or stochastic game version of the model

analyzed in Sannikov and Skrzypacz (2007), all future profits are signals of current efforts

(see Lemma 1 and Section 4.2). Thirdly, fundamentals need not be determined by the

efforts, and change stochastically. Alternatively, fundamentals are a sum of two terms:

one that depends entirely on the past efforts of the partners, and the other that is purely

stochastic and reflects an unknown quality of the partnership, in the spirit of Holmström

(1999). Consequently, in equilibrium partners do not know and keep on learning about

the fundamentals.

The three features are parametrized in the model by α, σY , σµ.12 Their impact on

the incentive provision in a partnership is one of the central themes of the paper, and we

discuss it at length in the following sections.

Public Beliefs Let µτ = E{a
1
t ,a

2
t }

τ [µτ ] denote the public expected level of fundamentals

at time τ , given efforts {a1t , a2t}. An application of the Kalman-Bucy filter yields that µt

follows

dµt = (r + α) (a1t + a2t )dt− αµtdt+ γt[dYt − µtdt], (3)

for an appropriate gain parameter γt, dYt = µtdt+σY dBt, and a Brownian Motion {Bt}.
We assume that, initially, partners believe that µ0 is Normally distributed with steady-

state variance σ2. This implies that both the posterior estimate variance σ2
t and the gain

parameter γt remain constant throughout the game and equal (see Liptser and Shiryaev

(2013))

γ =

√
α2 +

σ2µ
σ2Y
− α, and σ2 = γ × σ2Y . (4)

12The imperfect public monitoring repeated game is obtained by having µτ = a1τ + a2τ . In our model,
this can be approximated when σµ = 0 and the mean-reversion parameter α converges to infinity, and
thus the integral in Equation (2) converges pointwise to the sum of efforts at time t; see, among others,
Sannikov (2014).
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2.2 Equilibrium

A player’s (pure, public) strategy {ait} is a progressively measurable process that depends

on the public information {Yt} and allows for public randomization. A pair of public

strategies, {a1t , a2t} , is a perfect public equilibrium (PPE) if, for each partner i at any

time τ ≥ 0,

E{a
i
t,a
−i
t }

τ

[∫ ∞
τ

e−r(t−τ)
(µt

2
− c(ait)

)
dt

]
≥ E{ã

i
t,a
−i
t }

τ

[∫ ∞
τ

e−r(t−τ)
(µt

2
− c(ãit)

)
dt

]
, (5)

following any history, for any possible alternative strategy {ãit}.13

Markov Equilibria In a Markov equilibrium, play depends on the past history via

the minimal set of payoff-relevant states.14 Our model, however, is linear: the evolution

of the state µ is linear in the sum of efforts and the evolution of expected profits is linear

in the state. Given no effect of past efforts on the profitability of the current effort, the

model admits a unique Markov equilibrium, which is stationary.

Proposition 1 A pair of constant strategies {at, at} in which partners never exert effort,

at = 0, for every t ≥ 0, constitutes a PPE. It is the unique stationary PPE, and so it is

the unique Markov equilibrium.

The argument is as follows. Exploiting the linear structure of the model, we may

rewrite the continuation payoffs as

W i
τ = E{a

1
t ,a

2
t }

τ

[∫ ∞
τ

e−r(t−τ)
(
µτ
2
e−α(t−τ) +

∫ t

τ
(α+ r)

a1s + a2s
2

e−α(t−s)ds− c(ait)
)
dt

]
(6)

=
1

2 (r + α)
E{a

1
t ,a

2
t}

τ [µτ ] + E{a
1
t ,a

2
t}

τ

[∫ ∞
τ

e−r(t−τ)
(
a1t + a2t

2
− c(ait)

)
dt

]
.

The first term in the last line of (6) captures the expected value of “inherited” (ex-

pected) fundamentals to a partner. Even if at some time τ partners stop exerting effort,

13We note that a public strategy does not restrict a partner to condition only on the public expectation
µτ , or to revert to the equilibrium path immediately after a deviation; say, a strategy that lets a partner
shirk first, and then play depending on own estimate of the fundamentals depends only on clock time
and public signals.

14See Mailath et al. (2006), Definition 5.6.1 on page 191, for a formal definition of Markov equilibrium.

10



the fundamentals will only slowly revert to zero, yielding profits all along. The second

term is the forward-looking expected value of efforts undertaken in the future. Crucially,

it is not affected by the fundamentals: both the marginal effect of effort on fundamentals,

(r + α) dt, and the marginal value of fundamentals, 1
2(r+α)

, are constant. Thus, Markov

strategy does not need to condition on the past and has partners exert constant effort,

aM , which equates marginal cost with the constant Markov incentives of one half.

Our assumptions on the cost of effort normalize both the level of effort, as well as

the continuation payoffs in the Markov equilibrium, to zero. We say that a partnership

unravels if, from that point on, partners exert no more effort—that is, partners play the

Markov equilibrium.

We highlight that the Markov equilibrium is inefficient. As a partner’s effort benefits

the two partners equally, the marginal social benefit of effort is one, and so twice higher

than the incentives in the Markov equilibrium. In the rest of the paper, we show how

non-Markovian, relational incentives may bridge part of this efficiency gap.

Strongly Symmetric Equilibria The only information about the partners’ efforts

is provided by the stream of profits. As both partners’ efforts enter profits additively, it

is not possible to identify which of the partners did, and which one did not, contribute

to the common good (Fudenberg, Levine, and Maskin (1994)). Thus, as in the classic

analysis of repeated duopoly by Green and Porter (1984) or of partnerships by Radner,

Myerson, and Maskin (1986), it is not possible to provide incentives by “transferring”

continuation value between the agents via asymmetric play, shifting resources from likely

deviators.

Therefore, we concentrate throughout the paper on equilibria in which players choose

symmetric strategies, conditioning the provision of effort on the public history available

to them in the same way. Formally, a strongly symmetric equilibrium (SSE) is a PPE in

which the strategies {a1t , a2t} satisfy a1τ ≡ a2τ , after every public history in Ft.

Accounting of Incentives and Local Strongly Symmetric Equilibria Define

relational capital wτ as the expected discounted payoff from future (symmetric) efforts,
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that is, the continuation value net of the expected value of fundamentals,

wτ := Wτ −
1

2 (r + α)
E{at,at}τ [µτ ] = E{at,at}τ

[∫ ∞
τ

e−r(t−τ) (at − c(at)) dt
]
. (7)

Relational incentives are constructed by conditioning future play on public signals. They

are provided by players “burning value”: coordinating on future effort profiles leading to

relatively high relational capital after “good” signals—indicating high past effort—and

on relatively low relational capital after “bad” signals. When a partner increases effort for

a short interval of time, the probability distribution of future histories changes, shifting

towards the ones with high relational capital.

Specifically, we define relational incentive Fτ as the marginal benefit of effort net of

Markov incentives, or, equivalently, as the marginal effect of effort on relational capital.

Formally,

Fτ :=
∂

∂ε
E{at,at}τ

[∫ ∞
τ

e−r(t−τ) (at − c(at)) dt
]
, (8)

for the revenue processes dY ε
t = µεtdt+ σY dBt, where µετ = µτ + ε (r + α) is the expected

fundamentals initially increased by an infinitesimal extra effort (see formula (1)), for

ε > 0, which subsequently evolve analogously to µt,

dµεt = (r + α) (a1t + a2t )dt− αµεtdt+ γt[dYt − µεtdt], t ≥ τ. (9)

A necessary condition for a symmetric equilibrium is that effort is locally optimal, and

the partners cannot profit by a small change in effort at any moment on the equilibrium

path. That is, given Markov incentives of one half and relational incentives Fτ ,

a(Fτ ) = arg max
a
{(Fτ + 1/2)× a− c(a)} . (10)

A local strongly symmetric equilibrium (local SSE) is a profile of symmetric strategies such

that, following any history, actions are locally optimal, aτ = a(Fτ ), for the function a(·)

defined in (10), and Fτ as in (8). Finally, let E be the set of relational capital-incentive

pairs (wt, Ft) achievable in a local SSE. We parametrize its boundary of supremum in-

centives by F .15

15F, with F (w) = {sup Ft|(wt, Ft) ∈ E} is a partial function, defined only over the relational capitals
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3 Solution

This section contains the main technical results of the paper. It characterizes the set

of relational incentives and relational capitals that can be delivered in a local SSE. It

also constructs (nearly) optimal local SSE, and provides conditions for them to be fully

incentive compatible.

As the first step, the following lemma shows how relational capital and relational

incentives must evolve in a local SSE. Throughout this section, fundamentals are imper-

fectly monitored, σY > 0.

Lemma 1 A symmetric strategy profile {at, at} with bounded relational capital and re-

lational incentives processes {wt} and {Ft} is a local SSE if and only if there is a L2

process {It} such that

dwt = (rwt − (at − c(at))) dt+ It × (dYt − µtdt) + dMw
t , (11)

Fτ = E{at,at}τ

[∫ ∞
τ

e−(r+α+γ)(t−τ) (r + α) Itdt

]
,

and actions satisfy at = a(Ft), where {Mw
t } is a martingale orthogonal to {Yt}.

The first equation in the lemma is a version of the “promise keeping” accounting for

the continuation value (see Sannikov (2007)). If the current flow of relational capital is

lower than the average promised flow, then the relational capital must deterministically

increase in the next period, and vice versa. Moreover, relational capital also changes

stochastically in response to the unexpected profit realizations, dYt − µtdt, with linear

sensitivity It. The martingale process captures the possibility of public randomization.

A key intuition behind the second equation in (11) is that a deviation to a higher

effort today results in fundamentals above the publicly expected level not only now, but

throughout the future (see, also, Prat and Jovanovic (2014), Sannikov (2014), and Prat

(2015)). This means unexpectedly good news—profits higher than expected—throughout

the future, which keep pushing relational capital up (when sensitivities It are positive).

achievable in a local SSE.

13



After a deviating effort, the wedge between the private and public expectation of the

fundamentals reverts to zero gradually, at a rate α + γ. The first term is the exoge-

nous rate of decay of the fundamentals and the second term is the endogenous speed of

learning from profits about the fundamentals (Equation (3)). As an example, consider

an off-equilibrium increase in effort. Naturally, this leads to a stream of unexpectedly

high profits. Upon observing it, the public attributes part of the higher profits to a

persistent change in the partnership’s quality (due to it being stochastic) and part of

it to transient luck during this period (due to imperfect monitoring). The first effect is

incorporated into higher expectations of the fundamentals, and so higher expectations

of profits. Hence, as the stream of higher-than-expected profits is realized, the wedge

between private and public expectations shrinks. The effect of learning is, thus, that,

following the off-equilibrium higher effort, the realized higher-than-expected profits are

gradually attributed to a persistent exogenous change in the partnership’s quality (in a

similar fashion to Holmström (1999) and Cisternas (2017)). Note that when fundamen-

tals are deterministic, σµ = 0, partners do not learn in equilibrium, γ = 0. We discuss

the effect of learning on relational incentives in more detail in Section 4.2.

Lemma 1 identifies relational capital and incentives as two variables that characterize

any local SSE. The following result establishes an HJB characterization of F , hence

obtaining the boundary of the set of relational capital-incentive pairs achievable in a

local SSE.

Theorem 1 The upper boundary F of relational incentives achievable in a local SSE is

concave and satisfies the differential equation

(r + α+ γ)F (w) = max
I

{
(r + α)I + F ′(w) (rw − [a(F (w))− c(a(F (w)))]) +

F ′′(w)σ2Y
2

I2
}

= F ′(w) (rw − [a(F (w))− c(a(F (w)))])− (r + α)2

2σ2Y F
′′(w)

, (12)
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on [0, w∗), as well as the boundary conditions

F (0) = 0,

lim
w↑w∗

{
(r + α+ γ)F (w)− F ′(w) (rw − [a(F (w))− c(a(F (w)))])

}
= 0, (13)

lim
w↑w∗

{rw − [a(F (w))− c(a(F (w)))]} = 0,

where w∗ is the supremum of the relational capitals achievable in a local SSE. Moreover,

w∗ is not attained by any local SSE.

Theorem 1 provides a characterization in the form of a differential equation and bound-

ary conditions of the supremum F of relational incentives achievable in a local SSE. In

the first line of equation (12), the left-hand side is the average flow of relational incen-

tives needed to generate the stock of relational incentives F (w), given the exponential

discounting, mean reversion, and learning. The right-hand-side of (12) has the form of

an HJB equation for the problem of maximizing relational incentives F as a function

of relational capital. It is the point-wise maximum, over all policies I, of the expected

flow of relational incentives plus the stochastic differential operator applied to F . Specifi-

cally, the first term on the right-hand side captures the flow of relational incentives. This

reflects how responsive the relational capital is to the public signals. The second term

captures the change in the relational incentives resulting from the drift in the relational

capital. Relational incentives increase if the relational capital drifts in the direction where

the optimal incentives are higher. Finally, the last term captures the loss resulting from

the second-order variation in the relational capital. The (instantaneous) variance σ2
Y of

the signal translates to (instantaneous) variance σ2
Y I

2 of the relational capital, which

decreases future incentives due to the concavity of F .

The first boundary condition in (13) says that the relational incentives in any local SSE

with no relational capital must be zero. Strictly positive incentives, with equilibrium effort

by a partner, would allow for a profitable deviation to shirking. The second boundary

condition is equivalent to the second derivative of F being unbounded and, thus, the

optimal sensitivity, I, dying out as one approaches the bliss point. As a consequence,
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close to the bliss point, good outcomes are not rewarded and bad outcomes are not

punished: the flow of relational incentives dies out. The last boundary condition requires

the drift of the relational capital to also die out. The arguments behind the last two

boundary conditions are related. Either a positive drift or volatility would lead to an

escape of the relational capital beyond the supremum. Moreover, if the drift were strictly

negative, one could generate relational capital above the supremum, simply by letting it

drift down.

We note that the representation of the relational capital and relational incentives in

Lemma 1 have a form of a standard stochastic control problem. The Lemma provides a

law of motion of the state variable (relational capital) and an objective function in the

form of an integral (relational incentives), which depends on a policy function (sensitivity

It). However, in the representation in Lemma 1, the law of motion of the state variable

depends on the level of the objective function, via effort chosen, as in equation (10).

While such dependence is not allowed in a formulation of a standard stochastic control

problem, the proof in the Appendix establishes that the HJB characterization of the

solution via the HJB differential equation as in the theorem is valid.

Theorem 1 also shows that the supremum relational capital is not attainable, and so

an optimal local SSE does not exist. This follows from the last two boundary conditions

in (13), which imply that the supremum relational capital would have to be the outcome

of a stationary—and, hence, Markov—equilibrium.16 The construction of near-optimal

local SSE is achieved in the following result.

To guarantee existence, we now restrict attention to a class of local SSE, with sensi-

tivities It of relational capital with respect to profit flow either zero or weakly above ε, for

ε > 0. This yields self-generation of the upper boundary Fε in the following theorem.17 A

local SSE is called ε-optimal if it belongs to such class and gives rise to relational capital

16Formally, the non-existence of the optimal local SSE hinges on the openness of the set of strictly
positive yet arbitrarily small policies {It}, in the local SSE that approximate the unattainable supremum
w∗ (second boundary condition in 13).

17We point out that there might be other types of approximately optimal local SSE. The particular
class we focus on has the additional benefit of numerical tractability; in Appendix A.3 we provide the
bounds on the first two derivatives of the functions Fε in Theorem 2. In contrast, note that the equation
(12) in Theorem 1 has F ′′ arbitrarily small close to the right boundary.
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close to the supremum.18

Theorem 2 For ε > 0, consider local SSE with sensitivities It of relational capital with

respect to profit flow either zero or weakly above ε. The upper boundary Fε of relational

incentives achievable in a local SSE under this constraint is concave and satisfies the

differential equation

(r + α+ γ)Fε(w) =

max
Iε∈[ε,∞)

{
(r + α)Iε + F ′ε(w) (rw − [a(Fε(w))− c(a(Fε(w)))]) +

F ′′ε (w)σ2Y
2

I2ε

}
(14)

on [0, w∗ε ], as well as the boundary conditions

F (0) = 0,

(r + α+ γ)F (w∗ε)− F ′(w∗ε) (rw∗ε − [a(F (w∗ε))− c(a(F (w∗ε)))]) = 0, (15)

rw∗ε − [a(F (w∗ε))− c(a(F (w∗ε)))] < 0,

where w∗ε is relational capital achieved in an ε-optimal local SSE. Moreover, for any

solution of differential equation (14) with boundary conditions (15) on an interval [0, wε],

there is a local SSE achieving wε.

The result provides a tool to find the (approximate) supremum of relational capitals

achievable in local SSE. Any function solving the differential equation together with

the boundary conditions defines an achievable level of relational capital. The right-most

argument of the solution that reaches furthest to the right is the (approximate) supremum.

The function Fε in the theorem provides a recipe for constructing near-optimal local

SSE (see Lemma 2 in the next section). In Figure 1, Fε is the highest inverse parabola,

which reaches furthest to the right. At any point in time, for any value of relational

capital, the function determines relational incentives, and so the marginal benefit of

effort. This pins down the equilibrium effort and also the relational capital in the next

instant: it drifts deterministically—say, decreases if the flow benefits are large relative

18Formally, we require the distance to the supremum to be vanishing in ε. The equilibria in the next
theorem, in particular, achieves distance of order O(ε1/3).
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to the relational capital—but also responds to the stochastic news about the profit flows

(see Lemma (1)). The sensitivity to those news is the one that maximizes expression (14)

and, again, is pinned down by function Fε and its second derivative. In the next instant,

the game continues with updated relational capital (as described) and beliefs about the

fundamentals (see Equation 3).

This figure displays many different solutions of the differential equation (14), with the near-
optimal local SSE characterized by the curve that reaches farthest to the right. The horizontal
parabola is the locus of the feasible relational capital-incentives pairs (w,F ) that can be achieved
by symmetric play in a stage game, satisfying rw = a(F ) − c(a(F )). The efficient pair is
(200, 1/2).

Figure 1: Relational Incentives in a Near-optimal SSE

3.1 Global Incentive Compatibility

So far, we have characterized local equilibria. The following result shows conditions on

the primitives, under which local SSE satisfy full incentive-compatibility constraints. For

18



simplicity, in the remaining results we assume that the cost of effort is quadratic:19

(Quadratic Cost) c(a) =
1

2
a+

C

2
a2. (16)

Theorem 3 Fix ε > 0 and consider an ε−optimal local SSE {at, at}. Then, {at, at} is an

SSE when CσY is sufficiently high, where C is the second derivative of the cost function

and σY is observational noise.

The problem in establishing global incentive compatibility consists of showing that,

after any history, the effort choice is concave. Given that the effort cost function is

strictly convex, with the second derivative C, this boils down to establishing bounds on

how convex the expected benefit of effort can be. Crucially, in a dynamic environment

with persistence, like ours, a deviation affects the strength of incentives that the agent

faces in the future. This knock-on effect makes accounting for the benefits of deviations

much more involved than in a static setting, or without persistence.

Aligned with this intuition, to bound how convex the benefit of effort is, we establish

a uniform bound on how sensitive the relational incentives are with respect to public

signals for any history. The proof of Theorem 3 can thus be divided into two parts. The

first—related to results in the literature—shows that there are no global deviations from

a local SSE if the sensitivity of relational incentives is uniformly bounded (see Williams

(2011), Edmans et al. (2012), Sannikov (2014), and Cisternas (2017)). The second part

of the proof provides a bound for this endogenous sensitivity of relational incentives, as

a function of the primitives of the model. This relies on the analytical tractability of our

solution, for a given ε > 0.

19Quadratic costs greatly simplify deriving the bounds in Theorem 3 and the propositions in Section
4, but we are confident that the result can be extended to more general cost functions. Equation (39) in
Appendix A.4 provides a precise sufficient condition on the parameters that guarantees global incentive
compatibility.
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4 Information Structure and Partnership

The informational environment of a partnership, in our setting, is determined by three

parameters (see Section 2.1). First, partnerships differ by how persistent are the effects

of partners’ efforts and decisions. This is captured by the speed of depreciation, or mean-

reversion of the fundamentals, α, with high mean-reversion corresponding to transient

efforts, as in a repeated game. Second, partnerships differ by how well their fundamentals

are monitored, and so how well the progress of the venture can be tracked and assessed.

This is captured by the degree of noise in the public signals, σY . Third, partnerships

differ by the level of uncertainty about the quality of the venture or the partners. This

is captured by the degree of volatility of the fundamentals, σµ.

In this section, we investigate separately how the three dimensions of the information

structure affect the partnership’s value. (Note that efforts in the Markov equilibrium do

not depend on the information structure; see Proposition 1). We begin by establishing the

conditions on the informational environment for the existence of non-trivial equilibrium.

At the end we extend the model to allow for career concerns and compare the effects of

the informational environment on career and relational incentives.

4.1 Persistence and Non-Trivial Equilibria

Relational incentives are discounted at a rate of r + α + γ, which accounts for the time

preference, the persistence of the fundamentals, and the speed of learning. The next

proposition establishes that this “discount rate” is the key parameter determining ex-

istence of SSE with nontrivial relational incentives, which improve upon the Markov

Equilibria.20

Let wEF be the efficient level of relational capital, i.e., the relational capital resulting

from the constant efficient effort aEF by each partner—i.e. c′(aEF ) = 1.

20The exact parameter bounds for the existence result—part (i) of the proposition below—can be
found in Equations (41) and (43) in Appendix A.5. Formula (50) in Appendix A.5 describes the speed
of convergence for part (ii).
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Proposition 2 i) Fix the ratio r+α+γ
r

. There is δ > 0 such that when r + α + γ is

sufficiently small then the supremum of relation capitals achievable in an SSE is at least

δ × wEF .

ii) In contrast, for every δ > 0 the supremum of relational capitals achievable in an

SSE is less than δ × wEF , when r + α + γ is sufficiently large.

The “discount rate” r+α+γ determines the time horizon for the provision of incentives

(see Proposition 1). To motivate today’s effort when the rate is high, high-profit outcomes

must be rewarded soon—either because partners do not care much about the future (r

high), the effect of effort on profits wears off quickly, as when approximating a repeated

game (α high), or the effect is quickly attributed to a change in partnership’s quality (γ

high).

Relational incentives die out when the “discount rate” is high enough for two rea-

sons. The first reason is specific to relational incentives: when the relationship is at the

bliss point of highest relational capital, no more relational rewards are available for the

partners. The second reason is that over a short interval of time, profit signals about

the efforts are weak. Even with such imprecise signals, incentives would be possible by

combining rewards and punishments: while rewards and punishments are often meted out

incorrectly, the two errors may cancel out. However, incentives cannot be provided solely

with punishments, as they would be used mistakenly in equilibrium too often (see Abreu,

Milgrom, and Pearce (1991) and Sannikov and Skrzypacz (2007, 2010)). Taken together,

when the “discount factor” is high and so the time horizon for incentive provision is

short, relational incentives cannot be sustained at the bliss point of the partnership. The

construction of relational incentives essentially unravels.

In contrast, with a low “discount rate” on incentives, nontrivial relational incentives

are possible. Good signals (i.e high profit outcomes) are rewarded when the relational

capital of the partnership is in interior ranges. If the relationship is at the bliss point,

partners exert effort because such effort will be rewarded later, once the relational capital

drifts down. Waiting does not destroy much of the incentives since the discounting is low.

Relational incentives may, thus, increase when the effects of partners’ efforts are more
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long-lasting and persistent, with low α. One interpretation of this result is that part-

nerships may be the appropriate form of organizing a firm when partners make strategic

decisions that determine the future of the venture (α low), rather than routine decisions

that execute well-established blueprints to keep the revenue flowing (α high), as in a

repeated game.

Dynamics. The impossibility in the previous proposition is driven by the impossi-

bility of a flow of incentives near the bliss point of the partnership. This structure of

incentives also affects the equilibrium dynamics of effort in a non-trivial near-optimal

equilibrium. Profit outcomes that exceed expectations are always good news for the

partnership, increasing relational capital, as It ≥ 0. However, they do not always lead to

greater effort.

On one extreme, when a partnership runs out of relational capital, the partnership

unravels, relational incentives disappear, and no effort is taken in the future. Near this

extreme, when relational capital is low, a good outcome that increases relational capital

prolongs the life of a partnership and hence increases relational incentives and effort.

Formally, function Fε is increasing in this range.

On the other extreme, close to the bliss point, the flow of incentives vanishes and

partners are motivated by future increases in the relational incentives, once relational

incentives drift down. A good outcome only postpones the arrival at the interior ranges,

and hence decreases relational incentives and effort. Formally, function Fε is decreasing

in this range.

Corollary 1 In a near-optimal local SSE there is a threshold level of relational capital,

w#, such that i) at relational capitals below w# high profit realizations dYt increase equi-

librium effort (“rallying”), and ii) at relational capitals above w# high profit realizations

dYt decrease equilibrium effort (“coasting”).
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Effort and Relational Capital over time

(a) A short-lived partnership
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Effort and Relational Capital over time

(b) A long-lived partnership

Each panel displays a sample path of effort (on the left axis) and relational capital (on the right
axis) over time, starting near the supremum relational capital. The horizontal line represents
the level of relational capital at which effort is maximized. Initially players coast, and the
relational capital drifts down, undisturbed by shocks. When relational capital is above the
horizontal line, profit outcomes that increase relational capital lead players to exert less effort.
Changes in effort and relational capital are negatively correlated. When relational capital is
below the horizontal line, changes in effort and relational capital are positively correlated.

Figure 2: Effort and Relational Capital over Time

4.2 Monitoring the Partnership

The equilibrium in our dynamic environment is inefficient because partners do not observe

each other’s effort. Otherwise, they could incentivize efficient effort by reverting to the

inefficient Markov equilibrium following any spat of shirking.21 It seems thus compelling

that better monitoring of the fundamentals in our game should increase the partnership’s

value. The following proposition shows that this intuition captures only part of the

story.22

Proposition 3 i) Suppose fundamentals are deterministic, σµ = 0. The supremum w∗ of

relational capital achievable in a local SSE is increasing in the precision of the monitoring

technology σ−1Y .

21Modeling a continuous-time game with perfect monitoring runs into the usual problems. However,
“Grim-Trigger” strategies approximate efficiency in a discrete-time approximation of the game, given
that periods are “short” and so discount factor arbitrarily close to one, and the MinMax strategy is a
stage-game Nash equilibrium.

22For a given level of fundamental noise σµ, formula (51) in Appendix A.5 provides the speed of
convergence for part ii) of the proposition.
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ii) Suppose the fundamentals are stochastic, σµ > 0. The supremum w∗ of relational

capital achievable in a local SSE converges to zero, when the precision of the monitoring

technology σ−1Y converges to zero.

iii) Suppose the fundamentals are stochastic, σµ > 0, and monitored perfectly, σY = 0.

The unique SSE is the Markov equilibrium, with relational capital w = 0.

When there is no uncertainty about the quality of the partnership and fundamentals

are deterministic, better monitoring always improves efficiency (part (i) of the proposi-

tion). The intuition is simple: absent uncertainty about the quality, the public signals are

used solely as signals of effort, and better monitoring mitigates informational frictions.23

When the quality of the fundamentals is uncertain, partners use public signals not

only to incentivize effort but also to estimate the quality of the partnership. Better

monitoring still benefits the partnership by providing better signals of efforts, but it also

results in better learning about the fundamentals (higher gain parameter γ). Crucially,

faster learning means that good outcomes are quickly incorporated in increased expected

fundamentals, and the window for rewarding unexpectedly high outcomes, and so effort,

shrinks. This shorter horizon for the incentive provision is particularly harmful at the

bliss point of the partnership, when effort can be motivated solely by future rewards

(Proposition 2). Part (ii) of Proposition 3 establishes that, with little noise, this negative

effect is dominant and eliminates relational incentives.24

In the extreme, if fundamentals are monitored with no noise, the current change

in fundamentals is a sufficient statistic to evaluate current effort. Incentives must be

provided immediately, as in the repeated game i.i.d. setting. Since this is not possible at

23Note that providing the same level of incentives with less noise requires less variability of relational
capital in equilibrium. Suppose σµ, r = 1, α = 0; generating relational incentives F of, say, one, requires
sensitivity I of relational capital to public signal equal one as well. This results in the volatility of
relational capital σY , increasing in noise. Formally, the only impact of σY on the HJB equation (12) is
through the last term, with the cost of incentives due to the second-order variation of relational capital
increasing in σY .

24Note that, as σY shrinks, only the left-hand side (required mean flow of incentives) and the last
term in the HJB equation 12 (contribution of the incentive flow) are scaled up. When the middle
term capturing the benefit of delayed incentives disappears, the effect is similar as when the horizon for
incentive provision shrinks. Formally, the solution of the HJB equation that starts around w∗ > 0 would
reach arbitrarily high levels, since i) F ′′(w) is bounded away from negative infinity, as long as F (w) is
bounded away from zero; and ii) F ′(w) is arbitrarily steep close to w∗ (Theorem 1).
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the bliss point of maximal relational capital, the construction of any relational incentives

unravels (part (iii) of the proposition). This result is related to the impossibility of

nontrivial incentives in Sannikov and Skrzypacz (2007, 2010).25

One solution to this impossibility, following Abreu, Milgrom, and Pearce (1991), is to

withhold the arrival of information; players observe the relevant path of signals only at

times l, 2l, 3l, etc., for a fixed time length l > 0. In the new game—with “compounded”

periods, actions, and signals—the horizon for incentive provision is still only the current

period. However, the bundling of information improves the information quality in any

given period and partners can be incentivized to work even when the relationship is at

its best.

Proposition 3 above provides an alternative way of delaying the arrival of information:

poorer monitoring of the state. When effort has persistent effects, increasing the noisiness

of the signal of past efforts means that it takes longer for a partner to learn about effort

at any particular date. Our results show that with perfectly monitored fundamentals it

is not the “short periods”, but the instantaneous arrival of the relevant information and

instantaneous time horizon for incentives that hampers the provision of incentives in the

partnership. The impossibility in Sannikov and Skrzypacz (2007, 2010) is not due to the

peculiarities of continuous-time modeling, but to the extreme assumption of perfect state

monitoring.

4.3 Uncertainty about the Partnership

In our environment, there is an additional obstacle to the partners’ monitoring of each

other’s efforts: the quality of the partnership is stochastic and unobserved by the partners.

25While part iii) of the proposition establishes only the impossibility of nontrivial strongly symmetric
equilibria (when fundamentals are observable), the impossibility can be extended to asymmetric PPE,
under appropriate conditions. Namely, suppose that the cost of effort satisfies c′′′ ≤ 0. The condition
implies that for a given sum of efforts, the incentivizing sensitivity of the sum of private relational capitals
w1
t + w2

t with respect to profits is minimized with symmetric efforts. The proof of the impossibility of
incentives at a bliss point of the partnership is almost analogous to the one in the symmetric case; see
Sannikov and Skrzypacz (2007), Section V.B for details.
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The uncertainty is captured by the degree of volatility of the fundamentals, σµ.26

Proposition 4 The supremum of relational capital, w∗, that the partnership can gener-

ate in a local SSE decreases when the uncertainty regarding the partnership quality, σµ,

increases.

In contrast to improved monitoring, reducing uncertainty about the quality of the

joint venture facilitates the provision of incentives. This is because reduced uncertainty

results in the public news more closely tracking the effort exerted by the partners, instead

of reflecting the exogenous changes in quality.

One implication of the result is that the use of relational incentives to motivate

the partners is more adequate in mature, long-standing relationships, whose quality—

technology, product, environment, synergies, etc—is better known.27 As the partnership

is better understood, the partners can use the public news to more precisely reward the

provision of effort. In contrast, in young enterprises, the uncertainty about the quality of

the joint venture gets confounded with the uncertainty about the level of fundamentals.

Hence, if one of the partners free rides, part of the bad news will be attributed to a “worse

than expected” quality, inhibiting punishments.

Finally, depending on the level of uncertainty about the venture, a stream of bad

outcomes has a differential effect on relational capital and expected fundamentals. In

mature partnerships with little uncertainty (σµ is low or absent), profit outcomes barely

affect the expected fundamentals (as γ is close to zero). On the other hand, relational

capital is sensitive to the public news. It follows that a profitable and mature partnership

may unravel when its goodwill is tested by a short string of sharp, adverse outcomes,

with hardly any effect on its profitability (see Equations (3) and (4)). The Beatles (10

years together) and Daft Punk (28 years) in music; Jamie Dimon and Sandy Weill from

Citigroup (15 years) in finance; and Daniel Humm and Will Guidara from Eleven Madison

Park (13 years) in fine-dining provide stylized evidence. Younger enterprises, with more

26More precisely, variance in beliefs is strictly increasing in σµ, end equals zero when σµ does; see
Equation 4.

27For tractability, in this paper, we consider only stationary models, with uncertainty constant over
time. We can interpret it to be low for mature ventures, and high for younger ones.
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uncertainty about the partnership quality, tend to burn their perceived productivity

before dissolution.

Corollary 2 (“Beatles’ break-up”) In a near-optimal local SSE, at any point in time

t, a partnership may unravel in an arbitrarily short period of time after a sequence of

unexpected bad news. The accompanying change in the expected profitability is of order

σµ times the amount of bad news.

Figure 3 displays the differences in the dynamics of the fundamentals and of the

relational capital. It shows three different sample paths, highlighting that a partnership’s

relational capital is not determined by its profitability. Furthermore, even at dissolution,

partnerships have different levels of the fundamentals.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Fundamental of the Partnership

-20

0

20

40

60

80

100

120

140

160

R
e
la

ti
o
n
a

l 
C

a
p

it
a
l

Fundamental and Relational Capital: Comparing different Paths

This figure displays three different sample paths of the relational capital of a partnership, as a

function of the fundamentals of the relationship. The horizontal line marks the level of relational

capital at which effort is maximized.

Figure 3: Relational Capital and Fundamentals of a Partnership

4.4 Relational Incentives versus Reputation

In this paper, we have motivated the partners through relational incentives. However,

going beyond our model, the alternative incentive mechanism in weak-contractual en-
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vironments is to motivate agents by reputational effects, i.e., working to build a good

name in the market (career concerns, Holmström (1999)).28 Our model can be readily

extended to allow for career concerns. Importantly, the comparative statics of the effects

of the informational environment on career concerns is very different from the effects on

relational incentives, established above.

When building a reputation, a partner exerts effort so that good profit outcomes

are misattributed to a high quality of the venture, which in turn increases the venture’s

market value, captured by the partners. We may accommodate career concerns in our

model by adjusting the cumulative profit flow of the partnership at time t, πt, to consist

of the weighted sum of the noisy signal (as before) and the public belief of the partnership

fundamentals, πt = (1− κ)dYt + κµt, with the parameter κ ∈ [0, 1] capturing the relative

weight given to the public belief. In our baseline model, κ = 0.29

Compared to the direct incentives in the main model, career concerns incentives are

scaled by γ
r+α+γ

. This is because an extra unit of effort increases the private expectation

of the fundamentals above the public expectation, as in the main model. The difference

in the expectations degrades over time at a rate α + γ, and raises the payoff relevant

parameter (public expectation) by a factor of γ, at any point in time. Finally, an increase

in the payoff relevant parameter degrades over time as in the main model.30

It follows that, for a fixed set of parameters, the analysis of the provision of incentives

in a partnership with career concerns proceeds analogously as in the main model, but

with Markov incentives adjusted to κγ
2(r+α+γ)

+ (1−κ)
2

. Unlike in the main model, however,

Markov incentives are now affected by the information structure parameters α, σY , σµ (in

line with Holmström (1999)).

28Note that unlike in Holmström (1999) signal-jamming model, in our model efforts affect the state
rather than the signal.

29In Holmstrom’s model, the venture can be sold in every period in a competitive market, giving the
owner rights to collect the profit flow. The competitive price is the publicly expected level of the profit
flows, i.e., the fundamentals, µt. Thus, κ may be interpreted as the fraction of the partnership traded.

30Combining the three effects, the total marginal benefit of effort Fcc due to career concerns is

Fcc = (r + α)× γ

r + α+ γ
× κ

2(r + α)
=

κγ

2(r + α+ γ)
.
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Corollary 3 With career concerns, Markov incentives are i) increasing in persistence

α−1, ii) increasing in the precision of the monitoring technology σ−1Y , and iii) increasing

in the uncertainty about the partnership quality σµ.

While persistence has a similar effect on career concerns and relational incentives,

the effects of the monitoring technology and of uncertainty about the quality are in

direct contrast in the two settings. First, while precise monitoring eliminates relational

incentives, it improves learning about the changes in the quality of the partnership,

precipitating the arrival of the career concerns rewards. Second, the mechanism through

which the uncertainty affects the two kinds of incentives is the same, yet with opposing

effects. High uncertainty crowds out the relational reward for good outcomes, which

are misattributed to an exogenous change in the quality. While this restricts relational

incentives, the same mechanism facilitates career-concern incentives for effort.

These contrasting comparative statics have implications on the cross-section of orga-

nizational structures. Partnerships benefit when the progress of the venture is hard to

monitor, i.e. based on long-term, qualitative contributions, but the uncertainty about

the venture is low. In contrast, reliance on reputation-based incentives is more fruitful

if progress is easier to quantify and measure, but the uncertainty regarding the venture

quality, and so the scope for building reputation, is high. This is consistent with the

observation that partnerships are very common in the professional sector, i.e. law firms,

accounting, and advertising (see Levin and Tadelis (2005) and Von Nordenflycht (2010)).

The sector is dominated by old, established firms, with little outstanding uncertainty

about them, and at the same time the product of a firm is opaque.31

31In particular, in these knowledge-intensive environments, even after the output is produced and
delivered, its quality is hard to evaluate (see Empson (2001), Greenwood and Empson (2003), Broschak
(2004), and Von Nordenflycht (2010)). For instance, for an advertising agency, even after the campaign is
published its quality and effects are hard to measure: Was the advertising agency’s campaign responsible
for the sales increase? A similar argument holds for other professional partnerships, i.e. was the lawyer’s
argument responsible for the acquittal?
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5 Concluding Remarks and Discussion

The paper characterizes optimal relational incentives in a model of partnerships, with

persistent effects of partners’ efforts and imperfect state monitoring. The main economic

result is a novel mechanism for the benefit of poorer monitoring, specific to relational

incentives, which allows rewards and punishments to be delivered in a longer window

of time. Overall, our insights are consistent with the predominance of well-established

partnerships in industries in which the effects of effort are long-lived and hard to measure

(such as in the professional sector).

The insight also opens up the analysis of relational incentives in a continuous-time

setting. Persistence and imperfect state monitoring are important for applications, yet

are known to lead to intractable solutions. We develop a method to characterize optimal

relational incentives that extends stochastic control to game-theoretical settings with

persistence and imperfect state monitoring.

There are many ways in which one may modify our benchmark model. We conclude

the paper by informally discussing the robustness of the results with respect to some of

them.

1) Frequency of Play. One question is whether the results of the paper are specific to

the continuous-time Brownian setting considered here, or if they hold in an approximate

model with short, discrete time periods and Normal noise.

We have no reason to doubt that our results are approximated in the discrete-time

setting (albeit at the cost of working with difference equations). First, the boundary of

the set of incentives and relational values should be self-generating, and approximately

satisfy the differential HJB characterization, with short, discrete time periods. This

mirrors the classic results on Folk Theorem (see, e.g., Fudenberg, Levine, and Maskin

(1994)), or the results for a Brownian Principal-Agent model (Sadzik and Stacchetti

(2015)).32, 33 Second, the problems with providing incentives close to the boundary point

32In the Folk Theorem setting the boundary of the value set is approximated by a linear function; with
Brownian model, the approximation requires a quadratic function.

33The assumption of Normality in the approximation is likely important, though; see Sadzik and
Stacchetti (2015).
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of the supremum relational capital persist with a high frequency of play, for information

structures with Normal noise that approximate the Brownian model in this paper. This

continuity result is the subject of Sannikov and Skrzypacz (2007, 2010), in the special

case of no persistence (or in the case of perfectly monitored fundamentals). While we

are convinced the continuity holds also in our more general setting, the formal proof is

beyond the scope of this paper.

2) Mixed and Asymmetric Strategies; Other Solution Concepts. Throughout the paper

we restricted attention to pure strategy strongly symmetric equilibria. Formally, our

representation results suggest that mixing may not happen in equilibrium, as partners

face locally linear reward schemes in continuous-time, with a fixed marginal benefit of

effort. With no mixing, players have no private information, and hence every strategy,

even a deviating strategy, is public.34

In a discrete-time approximation, mixed strategies may help identify other players’

strategies (see Fudenberg, Levine, and Maskin (1994)). Moreover, extending the solution

concept to include private communication would allow conditioning of the play on past

mixing and open door to random “testing”, with subsequent punishment or reward of

the opponent (Kandori and Obara (2006)). For example, a partner may at random times

decrease her own effort to the minimum, and let the opponent “pay” for low outputs.

The same can be achieved with private, mediated messages (Rahman (2014)). This

individual monitoring, in the spirit of Alchian and Demsetz (1972) and standard moral

hazard, would provide additional incentives in a partnership.

Short of excluding one partner, as discussed above, asymmetric strategies neither

improve the monitoring nor increase efficiency (due to convex costs). It can therefore

best be thought of as an instrument for additional “burning value”. While we believe

asymmetric strategies may lead to better equilibria, explicitly allowing some degree of

enhancing or burning of the value, discussed next, seems to us a cleaner and more direct

modeling choice to capture the same channel.

34Note that a public strategy may implicitly condition on own past (pure) deviating actions, through
conditioning on the public information at that point in history.

31



3) Observable Actions. We may allow partners to exert additional observable effort.

It may be productive and drive profits up, or it may be unproductive, with the only effect

of “burning value”. We conjecture that the only difference in the resulting differential

equation (12) is the extra term in the drift of the relational capital. When observable

effort is parametrized by the effect o it has on the value of the partnership, in the case

when F ′ < 0, partners exert the efficient level of observable effort o > 0, which drives re-

lational capital down. When relational capital is low and F ′ > 0, partners exert the most

unproductive effort o < 0. This “conspicuous toiling” is best viewed as an investment in

relational capital, which moves up quickly in response.35

4) Capital accumulation impacting productivity. The model explored in this paper is

linear—the evolution of fundamentals is linear in the level of fundamentals and in the

exerted efforts, and the expected payoffs are linear in the level of fundamentals. While

linearity helps with a tractable characterization of relational incentives in partnerships,

the framework with persistence and imperfect state monitoring, as well as the solution

method, can naturally be extended to a wider class of non-linear models.

Given the familiar difficulties with learning in nonlinear environments, let us focus

on the case in which effort directly determines the fundamentals, however, the impact

of effort on fundamentals may not be linear (i.e. dµt = g(µt, a
1
t + a2t )dt, with g a con-

tinuously differentiable function). We can define the continuation payoffs, as well as the

marginal benefits of higher fundamentals, analogously to the main model. However, as

the impact of effort on fundamentals is not constant, the marginal benefit of a higher

fundamental depends not only on the continuation payoff (as before) but also on the level

of fundamentals. We can extend our HJB to encompass these scenarios by introducing

the level of fundamentals as an additional state variable.36

An important application of a nonlinear model is partnerships with capital accumula-

tion. The provision of effort today may affect the productivity of effort in the future and,

hence, the incentives for the provision of it. For instance, when developing a new product,

35Similar investment in the value of a partnership has been documented in the equilibrium setting by
Fujiwara-Greve and Okuno-Fujiwara (2009) and verified in the lab setting by Lee (2018).

36A previous version of this paper provided a formal derivation of the differential equation character-
izing the boundary of incentives achievable in local SSE in nonlinear settings.
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early efforts to hone in a better design have a significant effect on the productivity of

later marketing efforts.
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A Appendix: Proofs

A.1 Lemmas 1, 2, and 3.

In this section we prove three crucial lemmas for the proof of Theorem 1. The first

is Lemma 1 from the body of the paper. Lemmas 2 and 3 jointly correspond to the

Verification Theorem from the stochastic control literature.37 These two lemmas highlight

why we may not rely on the existing verification results.

Proof of Lemma 1. The proof can be split in two parts. First, we establish that for

an arbitrary pair of symmetric strategies {at, at}, relational capital {wt} follows a process

(11), for some L2 process {It} and a martingale {Mw
t } orthogonal to {Yt}. The proof

follows similar steps as Proposition 1 in Sannikov (2007). We derive the representation

for the relational capital process in (11) in the second step.

The process
{
Yt −

∫ t
0
µsds

}
, scaled by σY , is a Brownian Motion, and the process w̃t =∫ t

0
e−rs (as − c(as)) ds + e−rtwt is a martingale. Since efforts, and so w̃t are bounded, it

follows from Proposition 3.4.15 in Karatzas (1991) that w̃t equals
∫ t
0
e−rsIs (dYs − µsds)+

Mw
t , for an appropriate {It} and a martingale {Mw

t }. Differentiating and equating both

expressions for w̃t yields the representation.

Conversely, for a bounded process {vt} that satisfies (11), define the process ṽt =∫ t
0
e−rs (as − c(as)) ds+e−rtvt, together with w̃t as above. Both {ṽt} and {w̃t} are bounded

martingales and so, as their values agree at infinity, they agree after every history. It

follows that the processes {vt} and {wt} are the same. This establishes the first step.

Let us now evaluate the marginal benefit of effort, and the marginal relational benefit

of effort Fτ in particular. Consider the Brownian Motion σ−1Y

{
Yt −

∫ t
0
µsds

}
. It follows

from Girsanov’s Theorem that the change in the underlying density measure of the output

paths induced by the change in expected fundamentals from µτ to µετ = µτ + ε(r + α) is

Γεt = e
− 1

2

∫ t
τ
(µεs−µs)

2

σ2
Y

ds+
∫ t
τ
µεs−µs
σY

dYs−µsds
σY , (17)

for t > τ , where {µs}s≥τ and {µεs}s≥τ are the associated paths of estimates, defined in

(3) and (9), with µεs − µs = εe−(α+γ)(s−τ), s > τ . The relational capital at time τ thus

37See, e.g., Yong and Zhou (1999), Theorem 5.5.1, for a textbook treatment.
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changes to

E{at,at}τ

[∫ ∞
τ

e−r(t−τ)Γεt (at − c(at)) dt
]
. (18)

Since

∂

∂ε
Γεt

∣∣∣∣
ε=0

= (r + α)

∫ t

τ

e−(α+γ)(s−τ)
dYs − µsds

σ2
Y

,

which is also continuous, it follows that

Fτ =
∂

∂ε
E{at,at}τ

[∫ ∞
τ

e−r(t−τ)Γεt (at − c(at)) dt
]

= (r + α)E{at,at}τ

[∫ ∞
τ

e−r(t−τ) (at − c(at))
(∫ t

τ

e−(α+γ)(s−τ)
dYs − µsds

σ2
Y

)
dt

]
= (r + α)E{at,at}τ

[∫ ∞
τ

(∫ ∞
t

e−r(s−t) (as − c(as)) ds
)
e−(r+α+γ)(t−τ)

dYt − µtdt
σ2
Y

]
,

where the last equality follows from the change of integration.

Intuitively, in the last integral above, the inside integral corresponds to the forward

looking relational capital, which is then multiplied by a Brownian innovation, scaled by

the discounted impact of shifted (expected) fundamentals. The correlation between the

relational capital and the Brownian innovation equals It, from the representation of the

relational capital. This yields Fτ as the expected discounted integral of It.

Formally, for fixed τ and τ ′ ≥ τ,

Φτ ′ := (r + α)E{at,at}τ ′

[∫ ∞
τ

(∫ ∞
t

e−r(s−t) (as − c(as)) ds
)
e−(r+α+γ)(t−τ)

dYt − µtdt
σ2
Y

]
= (r + α)

[∫ τ ′

τ

(∫ τ ′

t

e−r(s−t) (as − c(as)) ds

)
e−(r+α+γ)(t−τ)

dYt − µtdt
σ2
Y

]

+ (r + α)wτ ′ ×

[∫ τ ′

τ

e−r(τ
′−t)e−(r+α+γ)(t−τ)

dYt − µtdt
σ2
Y

]
+ e−(r+α+γ)(τ

′−τ)Fτ ′

is a martingale, as a function of τ ′. Using the representation of the relational capital

established above, the change of this martingale equals

(r + α)

[
e−(r+α+γ)(τ

′−τ)Iτ ′ + ((aτ ′ − c(aτ ′))− rwτ ′)
∫ τ ′

τ

e−r(τ
′−t)e−(r+α+γ)(t−τ)

dYt − µtdt
σ2
Y

]
+
d

dt
e−(r+α+γ)(τ

′−τ)Fτ ′ ,

where the first term is the covariance of the Brownian increments of (r + α)wτ ′ and of

the bracketed stochastic intergral in the last line. Integrating over [τ,∞) and taking

2



expectation at time τ yields the formula in (11).

Finally, since effort increases fundamentals by (r+α)dt, and given the decomposition

of the continuation value as in (7), the effort process is a local SSE exactly when at

satisfies at = a(Ft) (see e.g. the Verification Theorem in Yong and Zhou (1999) Ch.3.2).

This establishes the proof.

Lemma 2 Let E : [w,w]→ R be a C2 strictly concave function that satisfies the differ-

ential inequality

(r + α + γ)E(w) ≤ max
I

{
(r + α)I + E ′(w) (rw − [a(E(w))− c(a(E(w)))]) +

E ′′(w)

2
σ2
Y I

2

}
= E ′(w) (rw − [a(E(w))− c(a(E(w)))])− (r + α)2

2σ2
YE
′′(w)

, (19)

where a is defined in (10), together with boundary conditions for each w∂ ∈ {w,w}:

(w∂, E(w∂)) ∈ E , (20)

or,

(r + α+ γ)E(w∂) = E′(w∂)
(
rw∂ −

[
a(E(w∂))− c(a(E(w∂)))

])
, (21)

sgn

(
w + w

2
− w∂

)
= sgn

(
rw∂ −

[
a(E(w∂))− c(a(E(w∂)))

])
.

Then each point on the curve is achieved by a local SSE, (w0, F (w0)) ∈ E for w0 ∈ [w,w].

The result implies that any solution E of the HJB equation (12)—equation version of

(19)—with boundary conditions (20-21) provides a lower bound for the supremum F of

relational incentives achievable in a local SSE. The proof constructs a local SSE, based

on the maximizer in (19), that achieves relational incentives E(w). Hence, the result

corresponds to one-half of a Verification Theorem.

In further detail, Ito’s formula implies that if {wt} is the relational capital that follows

(11) with policies {It} = {I∗(wt)}, where I∗(w) is the point-wise maximizer (“feedback

control”) and E is a solution to the HJB equation (12), then {E(wt)} is the associated

process of relational incentives, as in Lemma 1. When relational capital reaches a bound-

ary point that is known to be achievable by a local SSE, the game simply follows this

local SSE. Under the alternative boundary conditions (21), relational capital is reflected

3



back, and the construction as above continues.38, 39. The lemma is a convenient tool

to find non-trivial, tractable—not necessarily optimal—local SSE (see, for example, the

proof of Proposition 2)

Proof of Lemma 2. Let I : [w,w] → R, with I(w) ≥ I∗(w) = − r+α
σ2
Y E
′′(w)

, be the

strictly positive continuous function that solves (19) with equality, i.e.,

(r+α+γ)E(w) = (r+α)I(w) +E′(w) (rw − [a(E(w))− c(a(E(w)))]) +
E′′(w)

2
σ2Y I

2(w). (22)

Note that the first boundary condition in (21) can hold either when I
(
w∂
)

= 0, or, as

in our case, I(w∂) = −2 r+α
σ2
Y F
′′(w)

> 0. The construction of a local SSE that achieves the

boundary in the case I(w∂) > 0, when relational capital “escapes” the interval [w,w],

requires an additional step, as we detail below.40

First, we extend the functions E and I beyond the boundary points w∂, at which

condition (21) is satisfied with I
(
w∂
)
> 0 as follows. Consider a boundary point w∂ = w

and, say, rw∂ −
(
a(E(w∂))− c(a(E(w∂)))

)
< 0. We use the Implicit Function Theorem

to extend function E to a point w > w, so that conditions (21) and E ′′ (w) < 0 hold on[
w,w

]
. We also extend I continuously to the interval

[
w,w

]
with I(w) = −2 r+α

σ2
Y E
′′(w)

> 0,

so that E and I satisfy the equation (22) on
[
w,w

]
. In words, on the interval

[
w,w

]
the

relational incentives can be provided in two ways: they can either consist entirely of the

discounted future relational incentives, with zero flow, or by providing inefficiently high

flow of relational incentives I. The extension to the interval
[
w,w

]
in the case of w∂ = w

is analogous.

Fix w0 ∈ [w,w]. We first construct a process {wt} of continuation values that satisfies

the stochastic equation (11). Let τ∞ be the stopping time when {wt} reaches a boundary

point that is a local SSE. Moreover, define a sequence of stopping times (τn)n∈N+
such

that τ0 = 0; for n odd, τn ≥ τn−1 is the stopping time when {wt} reaches either of the

new, “outside” boundary points
{
w,w

}
; and for n > 0 even, τn ≥ τn−1 is the stopping

38More precisely, the stock of incentives E
(
w∂
)

at the boundary can be generated by having either

I
(
w∂
)

= 0, with relational capital drifting back inside of [w,w], or I(w∂) = −2 r+α
σ2
Y E

′′(w)
> 0. In the

proof in Appendix A.3, we show how to reduce the second case to the first one by extending the functions
E and I beyond [w,w], with I = 0.

39When (19) is an inequality, the construction is analogous, but with a continuous feedback control
function I : [w,w] → R+, I(w) ≥ I∗(w), for which (19) holds with equality. The existence of such
function I follows from strict concavity of E.

40We provide an elementary construction below. For the existence results of “Sticky Brownian Motion”
based on the local time techniques see, e.g., Engelbert and Peskir (2014).
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time when {wt} reaches either of the original “inside” boundary points {w,w}. For times

t ∈ [τn, τn+1) with n even and t < τ∞ we let {wt} be the weak solution to (11), with

It = I (wt) and {Mw
t } = 0, starting at wτn . Existence of a weak solution follows from the

continuity of it’s drift (which is a consequence of continuity of E and action defined via

(10)) and volatility I (see e.g. Karatzas (1991), Theorem 5.4.22). For times t ∈ [τn, τn+1)

with n odd and t < τ∞ we let {wt} be the weak solution to (11), with It = 0 and

{Mw
t } = 0, starting at wτn . In words, the process {wt} has positive volatility until it

reaches an “outside” boundary point in
{
w,w

}
, after which it drifts “inside” till it reaches

the “inside” boundary point in {w,w}, when it resumes with the positive volatility, and

so on.

It follows from Ito’s formula that before τ∞ the process Ft = E(wt), satisfies the equa-

tion in (11), with Jt = E ′(wt)× I(wt). Since both wt and Ft are bounded, the transver-

sality conditions are satisfied. Finally, we may extend the processes {wt} , {It} , {Ft} and

{Jt}, together with martingales {Mw
t } beyond τ∞ by letting them follow a local SSE that

achieves (wτ∞ , F (wτ∞)). Then the processes satisfy conditions of Lemma 1.

Lemma 3 For any λ > 0, let Eλ : [w,w] → R be a concave function that satisfies the

differential inequality

(r + α+ γ)Eλ(w) ≥ max
I

{
(r + α)I + Eλ′(w)

(
rw −

[
a(Eλ(w))− c(a(Eλ(w)))

])
+
Eλ′′(w)σ2Y

2
I2
}

+ λ

= Eλ′(w)
(
rw −

[
a(Eλ(w))− c(a(Eλ(w)))

])
− (r + α)2

2σ2YE
λ′′(w)

+ λ, (23)

on an interval [w,w], together with
∣∣Eλ′

∣∣ ≤ 1/λ and the boundary conditions Eλ(w) =

F (w) and Eλ(w) = F (w). Then there is δ := δ(λ) > 0 such that it is not possible that

the boundary F satisfies

Eλ(w) < F (w) ≤ Eλ(w) + δ, for w ∈ (w,w) .

The lemma above establishes a novel escape argument and, hence, the second half

of a Verification Theorem for our setting. If the law of motion of wt did not depend on

the level of the value function (relational incentives), as in a standard stochastic control

problem, then the result would hold with λ = 0 and δ =∞. Any value above the solution

of an HJB equation could be justified only by it drifting ever higher. In other words, a
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solution E of the HJB equation (12) with the given boundary conditions would provide

an upper bound for the supremum F of relational incentives achievable in a local SSE.

In our setting, the level of the value function (relational incentives) affects the law

of motion of the state variable, through the effort at. Thus, relational incentives higher

than the solution to (12) may affect the effort and increase the right-hand side of the

HJB equation. The lemma establishes only a “local” version of the bound: the boundary

F of relational incentives cannot reach locally above (a local perturbation of) a solution

E of the HJB equation, with given boundary conditions.

The proofs of Theorems 1 and 2 show how Lemmas 2 and 3 are sufficient to establish

the characterizations. In particular, they establish that the boundaries F and Fε are

smooth and satisfy the HJB equation (12), and derive the respective boundary conditions.

Proof of Lemma 3. Fix an interval [w,w] and a function Eλ : [w,w] → R that

solves the differential inequality (23) as in the Lemma, as well as δ small (see below).

Suppose, by contradiction, that the boundary F satisfies Eλ(w) = F (w), Eλ(w) = F (w),

and Eλ(w) < F (w) ≤ Eλ(w) + δ, for w ∈ (w,w). Fix any (w0, F0) with w0 ∈ (w,w)

together with a local SSE that achieves it, and let {wt} and {Ft} be the processes of

relational capital and relational incentives it gives rise to. Define D(wt, Ft) as the distance

of Ft from Eλ,

D(wt, Ft) = Ft − Eλ(wt).

Using Ito’s lemma together with Lemma 1, at any time t when D (wt, Ft) ∈ [0, δ], the

drift of the process D(wt, Ft) equals, for appropriate process {It},

E [dD(wt, Ft)]

dt
= (r + α+ γ)Ft − (r + α)It − Eλ′(wt)× (rwt − (a(Ft)− c(a(Ft)))) (24)

−
Eλ′′(w)

[
σ2Y I

2
t + d 〈Mw

t 〉
]

2

≥ (r + α+ γ)Ft − (r + α)It − Eλ′(wt)×
(
rwt −

(
a(Eλ(wt))− c(a(Eλ(wt)))

))
−
Eλ′′(w)

[
σ2Y I

2
t + d 〈Mw

t 〉
]

2
− λ

2

≥ (r + α+ γ)
(
Ft − Eλ(wt)

)
+ λ− λ

2
> (r + α+ γ)×D(wt, Ft),

The first inequality holds because
∣∣Eλ′(wt)

∣∣ ≤ 1/λ, functions a and c are Lipschitz con-

tinuous and D (wt, Ft) ∈ [0, δ], where δ is assumed to be sufficiently small. The second
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inequality follows because Eλ satisfies

(r + α+ γ)Eλ(w) ≥max
I

{
(r + α)I + Eλ′(w)

(
rw −

(
a(Eλ(w))− c(a(Eλ(w)))

))
+
Eλ′′(w)σ2Y

2
I2
}

+ λ,

(25)

Eλ is concave, and d 〈Mw
t 〉 is positive.

Let τ be the stopping time of the process D(wt, Ft) hitting zero. Due to D(w0, F0) > 0

and {D(wt, Ft)}t being a submartingale, from (24), it follows that there is a finite time

T such that E [D(wT , FT )|τ ≥ T ] > δ. Moreover,

0 < D(w0, F0) ≤ E
[
D(wmin{T,τ}, Fmin{T,τ})

]
= P (τ ≥ T )× E [D(wT , FT )|τ ≥ T ]

+ P (τ < T )× E [D(wτ , Fτ )|τ < T ]

= P (τ ≥ T )× E [D(wT , FT )|τ ≥ T ] ,

which implies P (τ ≥ T ) > 0. This establishes that D(wT , FT ) exceeds δ with positive

probability, contradiction.

A.2 Proof of Theorem 1

We begin the proof of the theorem with the following two technical lemmas. Recall that

the efficient level of relational capital is wEF = 1
r

(aEF − c(aEF )), for the efficient effort

level aEF , with c′(aEF ) = 1. Note that with the quadratic cost of effort as in (16), we

have aEF = 1
2C

, aEF − c(aEF ) = 1
8C

, and wEF = 1
8Cr

. Let also F be the lower arm of the

parabola, which is the locus of the feasible relational capital-incentives pairs (w,F ) that

can be achieved by symmetric play in a stage game, satisfying rw = a(F )− c(a(F )); see

Figure 1.

Lemma 4 The set E is convex and w∗ ≤ wEF . Moreover, the upper boundary F satisfies

F (w) ≥ F (w) > 0, w ∈ (0, w∗).

Proof. Convexity is immediate from the possibility of public randomization, and the

inequality w ≤ wEF follows from the definitions. For the second part of the lemma,

suppose by the way of contradiction that there exists w, 0 ≤ w < w∗, such that F (w) <

F (w). Note that at w the slope of F is smaller than the slope of F : otherwise, the

repeated static Nash point (0, 0), belonging to the graph of the convex function F , would
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not overlap with the convex set E . This implies that F is bounded away below F to the

right of w, and so in any local SSE the relational capital has drift bounded away above

zero, as long as wt ≥ w (see (11)). The possibility of escape of relational capital beyond

w∗ establishes the contradiction.

Lemma 5 Let f, e : [x, y)→ R be two concave functions such that

i) f ≤ e,

ii) f(x) = e(x) and f ′+(x) = e′+(x),

iii) e′′+(x) exists.

Then either f ′′+(x) exists and equals e′′+(x) or there is a function g with g(x) = f(x),

g′+(x) = f ′+(x) and g′′+(x) < e′′+(x) such that f ≤ g in a right neighborhood of x.

Proof. Suppose that f ′′+(x) does not exist or is not equal to e′′+(x). From i) and ii), this

means that there is a ε > 0 and a decreasing sequence {xn} → x such that

f(xn) ≤ e(x) + e′+(x)× (xn − x) +
(
e′′+(x)− ε

)
× (xn − x)2 .

However, concavity of f implies that the above inequality holds not only for the sequence

{xn} but in a right neighborhood of x. This implies the result, with g(w) = e(w)− ε(w−
x)2 in a right neighborhood of x.

The proof of Theorem 1 rests on the following four lemmas. Relying on Lemmas 2 and

3, as well as the above two lemmas, they establish that: (i) the boundary points (w,F (w)),

for w > 0, may not be generated by solely deferred incentives from the future and require

strictly positive volatility of relational capital, or flow of incentives (Lemma 6); (ii) the

boundary F is differentiable (Lemma 7); (iii) given any boundary point (w,F (w)) and

a tangent vector F ′, the solution of HJB equation (12) with those boundary conditions

must locally lie weakly above the boundary F (Lemma 8), as well as (iv) weakly below

the boundary F (Lemma 9).

The lemmas thus establish that in the range where the boundary F (w) is strictly pos-

itive, it must satisfy the HJB equation (12). The proof is then concluded by establishing

the boundary conditions (13).

Lemma 6 If (1, F ′) is a tangent vector at (w0, F (w0)), with w0 > 0, then

(r + α + γ)F (w0) > F ′ × (rw0 − [a(F (w0))− c(a(F (w0)))]) . (26)
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Proof. Pick (w0, F (w0)) with w0 > 0; it follows from Lemma (4) that F (w0) > 0. If

the drift term is zero, rw0 − (a(F (w0))− c(a(F (w0)))) = 0, then (26) holds. Suppose

then that the drift is strictly negative, rw0 − (a(F (w0))− c(a(F (w0)))) < 0 (when the

inequality is reversed the proof is analogous), and such that inequality (26) fails. Assume

also that (w0, F (w0)) is achieved by a local SSE, as opposed to being a limit of local SSE

pairs – an assumption that we relax at the end of the proof.

Let F
′ ≥ F ′ be such that (26) holds with equality, with F

′
in place of F ′. Consider

the function E defined over [w0, w
′], where w′ is in the right neighborhood of w0, such

that E satisfies (26) with equality, with initial condition (E(w0), E
′(w0)) = (F (w0), F

′
),

and such that w − (a(E(w))− c(a(E(w)))) < 0 for all w ∈ [w0, w
′]. E is the solution of

the implicit function second order ordinary differential equation.

Since (w0, E (w0)) is achieved by a local SSE and the boundary condition (13) holds

at w′, the function E satisfies conditions of Lemma 2, together with I ≡ 0. Consequently,

there are local SSE that achieve every pair in its graph, and so the function lies below

the boundary, E(w) ≤ F (w), w ∈ [w0, w
′]. Note that it follows that the strict inequality

(r+ α+ γ)F (w0) < F ′× (rw0 − [a(F (w0))− c(a(F (w0)))]) is impossible, or else F
′
> F ′

and E lies above F .

Consider now a strictly concave quadratic function G∗ defined in the right neighbor-

hood of w0 with (G∗(w0), G
∗′(w0)) = (F (w0), F

′(w0) and G∗(w) < E(w) for w > w0. The

function satisfies

(r + α+ γ)G∗ (w) < G∗′(w) (rw − [a(G∗(w))− c(a(G∗(w)))])− (r + α)2

2σ2YG
∗′′ , (27)

in a right neighborhood of w0. But then, by increasing slightly G∗′(w0), we may construct

a quadratic function G over an interval [w0, w] that also satisfies (27), together with

G(w0) = F (w0), G
′(w0) > F ′(w0), and G(w) < F (w). There exists then a function

I : [w0, w]→ R, with I(w) > − (r+α)2

σ2
Y G
′′ , such that

(r + α+ γ)G (w) = I(w) +G′(w) (rw − [a(G(w))− c(a(G(w)))]) +
G′′σ2Y

2
I2. w ∈ [w0, w]

Applying Lemma 2, each point (w,G(w)), for w ∈ [w0, w], can be achieved by a local

SSE. Since G′(w0) > F ′(w0), this yields the desired contradiction.

Finally, when (w0, F (w0)) is not achieved by a local SSE, the result follows for the

functions E,G∗, and G defined analogously as before, but with E(w0) = G∗(w0) =
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G(w0) = F (w0)− ε, for sufficiently small ε > 0.

Consider now the HJB equation (12), written as F ′′(w) = F(w,F, F ′). Lemma 6

implies that the right hand side of this equation is well defined and is Lipschitz continuous

in the neighborhood of the points (w0, F (w0), F
′), for any w0 in (0, w∗) and a tangent

vector (1, F ′), with F ′′ < 0. The following corollary is used repeatedly in the proof of the

theorem:

Corollary 4 The solution of the HJB equation (12) exists and depends continuously on

the initial parameters in the neighborhood of the boundary condition (w0, F (w0), F
′), for

any w0 in (0, w∗) and a tangent vector (1, F ′).

Lemma 7 The upper boundary F of the set of relational capital and relational incentives

achievable in a local SSE is differentiable in (0, w∗).

Proof. Suppose to the contrary that (w0, F (w0)) is a kink. If follows from Lemma 6 that

for any tangent vector (1, F ′) at (w0, F (w0))

(r + α + γ)F (w0) > F ′ × (rw0 − [a(F (w0))− c(a(F (w0)))]) .

Continuous dependence on the initial parameters implies that there exists λ > 0 such

that Eλ∗ solving (23) with the same initial conditions is strictly above the curve F in

a neighborhood of w0 (excluding point w0). Invoking the continuous dependence once

again, this time shifting the initial condition (w0, F (w0), F
′) down to (w0, F (w0)− ε, F ′),

for 0 < ε << λ, we construct a function Eλ that satisfies the conditions of Lemma 3,

yielding a contradiction.

Lemma 8 For any w0 in (0, w∗), the solution E to the differential equation (12) with

initial condition (w0, F (w0), F
′(w0)) is weakly above the curve F in a neighborhood of w0.

Proof. Suppose to the contrary that E < F in, say, the right neighborhood of w0

(the case of the left neighborhood is analogous). From continuous dependence on the

initial parameters, there are ε, δ > 0 such that that the solution Ẽ of (12) with initial

conditions (w0, F (w0)− δ, F ′(w0) + ε) crosses above and then comes back to F , meaning

Ẽ(w1) > F (w1) and Ẽ(w2) < F (w2) for some w2 > w1 > w0. But then the function Ẽ

defined on [w0, w2] satisfies conditions of Lemma 2, and so its graph is achievable by local

SSE. This yields a contradiction.
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Lemma 9 For any w0 in (0, w∗), the solution E to the differential equation (12) with

initial condition (w0, F (w0), F
′(w0)) is weakly below the curve F in a neighborhood of w0.

Proof. Let E satisfy (12) with initial conditions (w0, F (w0), F
′(w0)) and suppose that

either F ′′+(w0) does not exist, or F ′′+(w0) 6= E ′′+(w0) (the case of left second derivative is

analogous). Lemmas 7 and 8 establish that the conditions of Lemma 5 are satisfied, with

x = w0, e = E, f = F , and so in the right neighborhood of w0 F is bounded above by

E(w)− ε(w − w0)
2, for appropriate ε > 0. Continuous dependence on initial parameters

implies that there exists ε > 0 such that Eλ∗ solving (23) with the same initial conditions

(w0, F (w0), F
′(w0)) as E has second derivative at w0 strictly larger than E ′′(w0) − ε

and is strictly above the curve F in a right neighborhood of w0 (excluding point w0).

Invoking the continuous dependence once again, this time turning the initial condition

(w0, F (w0), F
′(w0)) right to (w0, F (w0), F

′(w0)− δ), for 0 < δ << λ, we construct a

function Eλ that satisfies the conditions of Lemma 3, yielding a contradiction.

The proof so far established that the boundary F satisfies the HJB equation (12)

on (0, w∗). To conclude the proof of the theorem, it remains to establish the boundary

conditions (13).

1. F (0) = 0. Strictly positive relational incentives at zero in a local SSE would imply

that the expected discounted efforts by each agent are strictly positive; consequently,

a deviation to zero effort always would yield a nonzero relational capital to a partner,

contradiction.

2. limw↑w∗ F (w) = F (w∗). i) Lemma 4 shows that limw↑w∗ F (w) < F (w∗) is im-

possible. ii) If limw↑w∗ F (w) ∈
(
F (w0), F (w0)

)
, then, using Lemma 2, it would be

possible to extend the solution to the right, with I(w) = 0 for w > w∗, contradic-

tion. iii) If limw↑w∗ F (w) = F (w0) then, whether F approaches F from above or below,

the differential equation (12) would be violated in the left neighborhood of w∗. iv) If

limw↑w∗ F (w) > F (w0), then relational capital in any local SSE achieving points close to

(w∗, limw↑w∗ F (w)) has strictly positive drift, bounded away from zero. This would lead

to the escape of w to the right of w∗, with positive probability, due to the strictly positive

diffusion term.

3. limw↑w∗ F
′′(w) = −∞. When the condition is violated, then I∗(w) is continuous

and strictly positive close to w∗. The proof of the theorem so far establishes that F is

C2 and satisfies the differential equation (12). Given this regularity, standard verification
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theorem techniques establish that the equilibria achieving (w,F (w)), w < w∗, must use

the optimal flow of relational incentives I∗(w) a.e. (see Yong and Zhou (1999)); when

(w,F (w)) is unattainable, the same is true for (w,E) in the limit, with E approaching

F (w). This, however, leads to the relational capital escaping to the right of w∗, with

positive probability.

A.3 Proof of Theorem 2

In the proof, let C and C be the upper and the lower bounds on the second derivative of

the cost function. In the following proofs we will need the following result.

Lemma 10 For a function G, with G = F , as in Theorem 1, or G = Fε, as in Theorem

2 and any ε ≥ 0, we have

G ≤ 2 +
(r + α)

8CσY r
√
r + α + γ

. (28)

Proof. Let w# > 0 be the argument where G attains maximum, G′(w#) = 0, and let

w◦ > w# be such that G(w◦) = 1
2
G(w#). Assume that G(w#) > 2 (or else the result is

trivial). In this case, for all w ∈
[
w#, w◦

]
G(w) > 1 = F (0) ≥ F (w),

and so the drift of relational capital rw − (a(F (w))− c(a(F (w)))) is positive. Conse-

quently,

(r + α + γ)G(w) < − (r + α)2

2σ2
YG
′′(w)

, w ∈ [w#, w◦]

or

−G′′(w) <
(r + α)2

2σ2
Y (r + α + γ)G(w)

≤ (r + α)2

σ2
Y (r + α + γ)G(w#)

, w ∈ [w#, w◦]. (29)

Summarizing, when G(w#) > 2 we have

1

2
G(w#) = G(w#)−G(w◦) <

(r + α)2

2σ2
Y (r + α + γ)G(w#)

(w◦ − w#)2

<
(r + α)2

2σ2
Y (r + α + γ)G(w#)

(
1

8Cr

)2

,

where the first equality follows from the definition of w◦, the first inequality follows from

G′(w#) = 0 and the bound (29), and the last inequality follows from w◦−w# < wEF−0 =
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1
8Cr

. This concludes the proof of the lemma.

The proof of the first part of the theorem is analogous to the proof of Theorem 1.

The optimal policy function implied by (14) is given by

I∗ε (w) = − r + α

σ2
Y F
′′(w)

, if F ′′ε (w) ≥ −r + α

σ2
Y ε

, (30)

I∗ε (w) = ε, if − 2
r + α

σ2
Y ε

< F ′′ε (w) < −r + α

σ2
Y ε

,

I∗ε (w) = 0, if F ′′ε (w) ≤ −2
r + α

σ2
Y ε

.

In what follows we establish that if there is w such that F ′′ε (w) < −2 r+α
σ2
Y ε

, then F ′ε(w) is

negative and of order ε−1/3. We claim that this is enough to establish the proof of the

theorem. Indeed, we may define w∗ε as the first point such that F ′′ε (w∗ε) = −2 r+α
σ2
Y ε

. Note

that, crucially, the policy I∗ε is continuous and weakly above ε over [0, w∗ε), and so the

constraint I /∈ (0, ε) is void. The existence of a local SSE then follows from the proof

of Lemma 2. The bound in footnote 24 follows from concavity of Fε, and the order of

F ′ε(w
∗
ε).

Step 1. For w∗ε defined as the first point such that F ′′ε (w∗ε) = −2 r+α
σ2
Y ε

, we have

w∗ε − w = O(ε1/3), when F ′ε < 0,

w = O
(
ε1/3
)
, when F ′ε > 0.

Consider w such that F ′′ε (w) < −2 r+α
σ2
Y ε

. Given quadratic costs, we have

(a(Fε(w))− c(a(Fε(w))))′ =
1

C
(1/2− Fε(w))F ′ε(w),

for C ∈
[
C,C

]
. Thus, differentiating (14), we get41

F ′′ε (w) =
F ′ε(w)

(
α + γ + [a(Fε(w))− c(a(Fε(w)))]′

)
rw − a(Fε(w))− c(a(Fε(w)))

(31)

=
F ′ε(w)

(
α + γ + 1

C
(1/2− Fε(w))F ′ε(w)

)
rw − a(Fε(w))− c(a(Fε(w)))

≥ − F ′2ε (w)

2C|rw − a(Fε(w))− c(a(Fε(w)))|
, when F ′ε(w) ≤ 0

≥ − C1F
′2
ε (w)

C(rw − a(Fε(w))− c(a(Fε(w))))
, when F ′ε(w) ≥ 0

41Note that (14) implies F ′ε(w)× [rw − a(Fε(w))− c(a(Fε(w)))] ≥ 0.
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where C1 is the bound on Fε from Lemma 10. For an appropriate C2 > 0 this yields

F ′2ε (w)

|rw − a(Fε(w))− c(a(Fε(w)))|
≥ C2

ε
. (32)

On the other hand, equation (14) implies that

F ′ε(w) (rw − [a(Fε(w))− c(a(Fε(w)))]) = (r + α + γ)Fε(w) ≤ (r + α + γ)C1. (33)

Inequalities (32) and (33) imply that |rw−a(Fε(w))−c(a(Fε(w)))| ≤ C3ε
1/3, with C3 > 0.

Since Fε (w) ≥ 1/2, in the case when F ′ε (w) ≥ 0 (so that the drift of relational capital

is positive), whereas Fε (w) ≥ limw→w∗ε Fε(w) = F (w∗ε) ≥ C4 > 0, in the case when

F ′ε (w) ≤ 0 (the equality follows from the boundary condition (13)) equation (14) yields

|F ′ε (w)| = (r + α + γ)Fε (w)

|rw − a(Fε(w))− c(a(Fε(w)))|
≥ C5ε

−1/3. (34)

Since Fε is concave, the inequality establishes Step 1.

Step 2. The case F ′ε(w) ≥ 0 is not possible.

Since w is small and rw−a(Fε(w))−c(a(Fε(w))) positive, we have Fε(w) ≈ F (0) = 1.

Differentiating (31),

F ′′′ε (w) =

(
F ′ε(w)

rw − a(Fε(w))− c(a(Fε(w)))

)′ (
α + γ + (a(Fε(w))− c(a(Fε(w))))′

)
(35)

+
F ′ε(w)

rw − a(Fε(w))− c(a(Fε(w)))
(a(Fε(w))− c(a(Fε(w))))′′

>
F ′ε(w)

rw − a(Fε(w))− c(a(Fε(w)))
(a(Fε(w))− c(a(Fε(w))))′′

=sgn (a(Fε(w))− c(a(Fε(w))))′′ ,

where the inequality follows from the fact that F ′′ε (w) < 0 and

(rw − a(Fε(w))− c(a(Fε(w))))′ = r − 1

C
(1/2− Fε(w))F ′ε(w) ≈ r +

1

2C
F ′ε(w) > 0,

α + γ + (a(Fε(w))− c(a(Fε(w))))′ = α + γ +
1

C
(1/2− Fε(w))F ′ε(w)

≈ α + γ − 1

2C
F ′ε(w) < 0,
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for C ∈
[
C,C

]
, when ε is small enough. Finally,

(a(Fε(w))− c(a(Fε(w))))′′ =

(
1

C
(1/2− Fε(w))F ′ε(w)

)′
(36)

=sgn (1/2− Fε(w))F ′′ε (w)− (F ′ε(w))
2 ≈ −1

2
F ′′ε (w)− (F ′ε(w))

2

≈ 1

4C

(F ′ε(w))2

rw − a(Fε(w))− c(a(Fε(w)))
− (F ′ε(w))

2
> 0,

when ε is small enough, where the last line follows from (31). This establishes that

F ′′ε (w0) ≤ −2 r+α
σ2
Y ε

implies F ′′′ε (w0) > 0, and so the case F ′ε(w
0) ≥ 0 is not possible. This

establishes Step 2 and the proof of the Theorem.

Corollary 5 On the interval [0, w∗ε ] we have the bounds

F ′′ε (w) ≥ 2
r + α

σ2
Y ε

,

F ′ε(w) ≤ F ′ε (0) ≤ 1

8rC
× 2

r + α

σ2
Y ε

.

The first bound follows from the definition of w∗ε as the first point such that F ′′ε (w∗ε) =

−2 r+α
σ2
Y ε

. The second line follows from wEF ≤ 1/8rC and F ′′ε (w) ≥ 2 r+α
σ2
Y ε

when F ′ε(w) ≥ 0.

A.4 Proof of Theorem 3

Step 1. Fix ε > 0 and consider an ε−optimal local SSE {at, at}, together with the pro-

cesses {wt} , {Ft} , {It} and {Jt} that satisfy equations (11) (Proposition 1 and Theorem

2). In this step we show that as long as

Jt ≤
C (r + 2 (α + γ))

8 (r + α)
, ∀t (37)

then, for an appropriate X > 0 and any deviating strategy {ãt}, the relational capital at

any time τ ≥ 0 to the deviating agent is bounded above by

w̃τ (µ̃τ − µτ , wτ ) = wτ +
Fτ
r + α

(µ̃τ − µτ ) +X(µ̃τ − µτ )2. (38)

In the formula, wτ is the equilibrium level of relational capital, determined by (11), µ̃τ

are the correct beliefs, given strategies {ãt} and {at}, and µτ are the equilibrium beliefs,

given that both strategies are {at}, both determined by (3). Consequently, using the

bound with µ̃t = µt, the step establishes that local SSE strategies are globally incentive

compatible, as long as the bound (37) holds.
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Fix a deviation strategy {ãt} and consider the process

vτ =

∫ τ

0

e−rs
(
ãt + at

2
− c(ãt)

)
dt+ e−rττ w̃(µ̃τ − µτ , wτ ),

where, from (3), the wedge process {µ̃t − µt} follows

d (µ̃t − µt) = (r + α) (ãt − at)dt− (α + γ) (µ̃t − µt) dt.

In order to establish that w̃τ bounds the relational capital under {ãt} and {at}, it is

enough to show that the process {vt} has negative drift. We have

e−rtdvt =

(
ãt + at

2
− c(ãt)

)
dt− r

(
wt +

Ft
r + α

(µ̃t − µt) +X(µ̃t − µt)2
)

+ (rWt − (at + c(at)))dt+ It × (dYt − µtdt)

+
µ̃t − µt
r + α

((r + α + γ)Ft − (r + α)Itdt+ Jt × (dYt − µtdt))

+

(
Ft

r + α
+ 2X(µ̃t − µt)

)
((r + α) (ãt − at)dt− (α + γ)(µ̃t − µt)dt) .

Given that the drift of dYt−µtdt is (µ̃t−µt)dt, the drift of the e−rtdvt process equals

ãt − at
2

+ c(at)− c(ãt) + Ft(ãt − at)

+ (µ̃t − µt)2
(

Jt
r + α

−X (r + 2 (α + γ))

)
+ (µ̃t − µt)(ãt − at)2X (r + α)

≤ ãt − at
2

+ c(at)− c(ãt) + Cat(ãt − at)

+ (µ̃t − µt)2
(

Jt
r + α

−X (r + 2 (α + γ))

)
+ (µ̃t − µt)(ãt − at)2X (r + α)

= −C
2

(at − ãt)2 + (µ̃t − µt)2
(

Jt
r + α

−X (r + 2 (α + γ))

)
+ (µ̃t − µt)(ãt − at)2X (r + α) ,

where we used that c(a) = 1
2
a+ C

2
a2, and Ft(ãt− at) ≤ Cat(ãt− at), with equality in the

case at < A.

Note that when the matrix[
−C

2
X (r + α)

X (r + α) Jt
r+α
−X (r + 2 (α + γ))

]
has a positive determinant, then the trace is negative, and the matrix is negative semidef-
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inite, guaranteing negative drift. Since

max
X

{
−C

2
×
(

Jt
r + α

−X (r + 2 (α + γ))

)
−X2 (r + α)2

}
=

C

2 (r + α)

(
C (r + 2 (α + γ))

8 (r + α)
− Jt

)
,

it follows that, indeed, when Jt is bounded as in (37), then w̃τ defined in (38) bounds the

relational capital, for X that maximizes the above expression.

Step 2. Fix ε > 0 and consider an ε−optimal local SSE {at, at}. In this step we

show that when CσY is sufficiently large, then for any wt the sensitivity Jt of relational

incentives is bounded as in (37). Together with step 1, this will establish the proof of

Theorem 3.

Recall from Lemma 2 that

Jt = J(wt) = F ′ε(w)× I∗ε (w).

Let us bound I∗ε (w), in the case when F ′ε (w) > 0. (Since I∗ε ≥ 0, the bound (37) holds

in the case when F ′ε (w) ≤ 0.) Over the subset S ⊆ [0, wε) where F ′′ε (w) < − r+α
σ2
Y ε

, we

simply have I∗ε (w) = ε. Over the complement [0, wε)\S, where F ′′ε (w) ≥ − r+α
σ2
Y ε

, we have,

I∗ε (w) = − r + α

σ2
Y F
′′
ε (w)

=
2

r + α
{(r + α + γ)Fε(w)− F ′ε(w) (rw − (a(Fε(w))− c(a(Fε(w)))))}

≤ 2

r + α

{
(r + α)

√
r + α + γ

8CσY r
+ 2(r + γ + α) +

r + α

4σ2
YCrε

1

8C

}
,

=

√
r + α + γ

4CσY r
+ 4

r + γ + α

r + α
+

1

16C2σ2
Y rε

=: I#

where we use the bound (28) on Fε from Lemma 10, the bound on F ′ε from Corollary 5,

and the lower bound of − (aEF − c (aEF )) = −1/8C on the drift of relational capital.

Condition (37) thus boils down to

Jt = F ′ε(w)× I∗ε (w) ≤ r + α

4σ2
YCrε

× I# ≤ C (r + 2 (α + γ))

8 (r + α)
,

or,
√
r + α + γ

4CσY r
+ 4

r + γ + α

r + α
+

1

16C2σ2
Y rε
≤ (r + 2 (α + γ))

2 (r + α)2
C2σ2

Y rε, (39)

which is satisfied when CσY is large enough. This concludes the proof of the step, and

of the theorem.
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A.5 Proofs for Section 4

Proof of Proposition 2. Part i) Recall that the efficient level of relational capital wEF

equals 1
8Cr

. The proof strategy is to construct a quadratic function E over the interval

[0, w], with w = δ
8Cr

and fixed small δ (determined later) that satisfies the differential

inequality

(r + α + γ)E(w) ≤ E ′(w)× (rw − [a(E(w))− c(a(E(w)))])− (r + α)2

2σ2
YE
′′(w)

, (40)

exactly as in Lemma 2, together with the left boundary condition E (0) = 0 (achievable

by the Markov equilibrium), and the right boundary condition (21). The result then

follows from Lemma 2.

Specifically, given the quadratic cost of effort c(a) = a
2

+ C
2
a2, the flow payoffs (given

interior efforts) satisfy

a(E)− c(a(E)) =
E(w)

2C
(1− E(w)) ,

and also F ′(0) = 2Cr. We let the right boundary condition

E(w) =
1

2
> F (w),

E ′ (w) =
(r + α + γ)E(w)

rw − E(w)
2C

(1− E(w))
=

1
2
(r + α + γ)
δ
8C
− 1

8C

=
−4C(r + α + γ)

1− δ
,

so that the first equation in (21) is satisfied at w; the second equation follows from

F (w) ∈
(
F (w), F (w)

)
, which implies negative drift of relational capital. The constant

second derivative D of function E is pinned down by

E (w) =

∫ w

0

E ′(x)dx =

∫ w

0

[E ′(w)−D (w − x)] dx = E ′(w)× δ

8Cr
− D

2

(
δ

8Cr

)2

,

D = 2

(
E ′(w)

δ

8Cr
− E (w)

)(
8Cr

δ

)2

= −
(
r + α + γ

r

δ

(1− δ)
+ 1

)(
8Cr

δ

)2

≥ −128C2r (r + α + γ)

δ2
,

with inequality holding as long as δ ≤ 1
2
.

We now establish the bounds for the function E. Let w# be the point where E is

18



maximized. For all w ∈ [0, w],

E(w) ≤ E(w#) =
1

2
− D

2
(w − w#)2 =

1

2
− D

2

(
E ′(w)

D

)2

=
1

2
+

1

2

16C2δ2

(1− δ)264C2
(
r+α+γ

r
δ

(1−δ) + 1
) (r + α + γ)2

r2
,

|E ′(w)| ≤ E ′(0) ≤ −Dw ≤ 128C2 (r + α + δ)

δ
.

Recall that the parabola, which is the locus of the feasible relational capital-incentives

pairs (w,F ) that can be achieved by symmetric play in a stage game, is defined via

rw = a(F ) − c(a(F )) = F (w)
2C

(1− F (w)) and, in particular, crosses the vertical axis at

points (0, 0) and (0, 1) (see Figure 1). It thus follows from the bound on E(w) above that

when δ is small then the graph of the function E is within the parabola, for any values

of parameters r, α, γ with a fixed ratio r+α+γ
r

. Consequently, for all w ∈ [0, w],

− 1

8C
≤ rw − E(w)

2C
(1− E(w)) ≤ 0.

The last three bounds imply that when δ is small, then

(r + α + γ)E(w)− E ′(w)

(
rw − E(w)

2C
(1− E(w))

)
≤ (r + α + γ)

(
1 +

16C

δ

)
,

−(r + α)2

2σ2
YD

≥ (r + α)2

r(r + α + γ)

δ2

256C2σ2
Y

.

The two inequalities establish that inequality (40) is satisfied, and so nontrivial local SSE

exist, when r + α + γ is small enough so that

(r + α + γ)

(
1 +

16C

δ

)
≤ (r + α)2

r(r + α + γ)

δ2

256C2σ2
Y

. (41)

To verify the existence of fully (globally) incentive compatible nontrivial SSE, note

that the policy function I (w) equals zero at the extremes, and for any w ∈ (0, w) satisfies

I (w) ≥ −r + α

σ2
YD
≥ r + α

r(r + α + γ)

δ2

128C2σ2
Y

=: ε. (42)

Condition (39) for global incentive compatibility, in the proof of Theorem 3, given (42),

boils down to
√
r + α + γ

4CσY r
+ 4

r + γ + α

r + α
+

8

δ2
r + α + γ

r + α
≤ δ2

256

r + 2 (α + γ)

(r + α)2
r + α

r + α + γ
. (43)

For a given ratio r+α+γ
r

, inequalities (41) and (43) hold when r + α + γ is sufficiently

small. This concludes the proof of part i).
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Results do not depend of normalizing the marginal benefit of effort: The

proposition remains true when the effect of action is scaled up by X > 1, so that dµt =

X (r + α) (a1t + a2t )dt − αµtdt + σµdB
µ
t (for example, when the effect is independent of

r+α, we have X = (r+α)−1). We briefly comment here how the proof of the proposition

must be adjusted.

For a fixed X > 1 the Markov equilibrium action becomes aXM = X−1
2C

, and, given

relational incentives FX , the locally optimal action aX(FX) equals aXM + FX

C
. The

flow of relational capital (flow of equilibrium utility net of Markov equilibrium level)

is XaX(FX)− c(aX(FX)), which equals FX

2C

(
X − FX

)
; consequently, the HJB equation

generalizes from (12) in Theorem 1 to

(r + α+ γ)FX(w) = max
I

{
X(r + α)I + FX′(w)

FX(w)

2C
(X − F (w)) +

FX′′(w)σ2Y
2

I2
}

(44)

= FX′(w)
FX(w)

2C

(
X − FX(w)

)
− X2(r + α)2

2σ2Y F
X′′(w)

.

For the new parametrization, the construction remains analogous as in the proposition,

with aXEF = Xw1
EF , wXEF = Xw1

EF , wX = Xw1, EX(wX) = XE1(w1), EX′(wX) =

E1′(w1), and EX′′(w) = 1
X
E1′′(w). The bounds on function E in the proof change to:

EX(w) ≤ X×E1(1), |EX′(w)| = |E1′(w)|, and 0 ≥ (rw − (2C−1)EX(w)(X − EX(w))) ≥
X×(rw − (2C−1)EX(w)(X − EX(w))). Consequently, all the terms in the inequality (40)

are bounded by the terms scaled up by X, and the inequality continues to hold.

Part ii) Fix w = δ × wEF = δ
8Cr

, for some δ > 0. We start with few preliminary

observations. Suppose that w∗ > w. Observe that for all w such that F ′(w) ≤ 0 we have

F (w) ≥ lim
s→w∗

F (s) = F (w∗) > F (w) ≥ 2Crw =: A, (45)

where the last inequality follows from F (0) = 0, F ′(0) = 2Cr, and F convex. Secondly,

recall from Theorem 1 that as w approaches w∗ from the left, then F ′(w) gets arbitrarily

high, and F ′′(w) arbitrarily low. Finally, note that for any w > 0 the drift of the relational

capital is uniformly bounded from below by

rw−(a(F (w))− c(a(F (w)))) > −[a(F (w))−c(a(F (w)))] ≥ −[aEF−cEF ] = − 1

8C
=: −B.

(46)

In the proof we establish that for the “discount factor” r + α + γ sufficiently high,
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if w∗ ≥ w and so w was achievable in a SSE, then the the value F (w#) of relational

incentives at the point w# such that F ′(w#) = 0 would be arbitrarily high as well, for

the function F characterized in Theorem 1. This will contradict the bound on F (w#)

established in Lemma 10.

Fix w close to w∗, such that−F ′′(w) equals ε−1 > 0 sufficiently large, to be determined

later. Consider an auxiliary differential equation

(r + α + γ)A = −G′(w)B − (r + α)2

2σ2
YG
′′(w)

, (47)

together with a boundary conditionG(w) = F (w), G′′(w) = F ′′(w), and solved for w ≤ w.

Let w## < w be such that G′
(
w##

)
= 0. We argue that

G′(w) > F ′(w), for all w ∈ [w##, w]. (48)

Indeed, note that F satisfies equation (12), related to (47), but with F (w) in place of A,

and rw− (a(F (w))− c(a(F (w)))), in place of −B. It follows from (45) and (46) that the

inequality in (48) holds at w = w. If (48) does not hold (in the entire range), then let

w&, w# < w& < w, be the maximal point such that G′(w&) ≤ F ′
(
w&
)
. It follows that

F (w&) > G(w&) and rw&−
(
a(F (w&))− c(a(F (w&)))

)
> −B, and so G′′(w&) < F ′′(w&).

This last inequality contradicts maximality of w&.

Inequality (48) implies that

F (w#) > G(w##), (49)

for the maximal values of the respective functions, with F ′(w#) = 0 and G′(w##) = 0.

We now compute G(w##). The solution to the differential equation (48) takes the

form

G′(w) =

√
ε2 + 2c(w − w)− d

c
, G′′(w) = − 1√

ε2 + 2c(w − w)
,

for

d = 2

(
σY
r + α

)2

(r + α + γ)A, c = 2

(
σY
r + α

)2

B.
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It follows that

w## = w − d2 − ε2

2c
,

G(w##) = G(w)−
∫ w

w##

G′(w)dw = G(w)−
∫ w

w##

√
ε2 + 2c(w − w)− d

c
dw

= G(w) +
d2 − ε2

2c

d

c
+

1

c

2

3

1

2c

[
ε2 + 2c(w − w)

]3/2∣∣∣w
w##

= G(w) +
d2 − ε2

2c

d

c
+

ε3

3c2
d2 − ε2

2c
− 1

3c2
(
d2 − ε2

)3/2 ≥ d3

2c2
− d3

3c2
=

1

6

d3

c2
,

where the last inequality holds when ε is chosen small enough. Substituting for d, c, B

and A, with w = δ
8Cr

, yields

G(w##) ≥ 512

3

(
σY
r + α

)2

(r + α + γ)3C4r3
(

δ

8Cr

)3

=
1

3

(
σY
r + α

)2

(r + α + γ)3Cδ3.

Finally, given the above bound, the bound on F from Lemma 10 together with (49)

imply

1

3

(
σY
r + α

)2

(r + α + γ)3Cδ3 < 2 +
(r + α)

8CσY r
√
r + α + γ

. (50)

The inequality cannot be satisfied, when r > 0 and r + α + γ is sufficiently large. This

concludes the proof of the proposition.

Results do not depend of normalizing the marginal benefit of effort: As in

the case of part i), part ii) of the proposition remains true when the effect of action is

scaled up by X < 1, so that dµt = X (r + α) (a1t + a2t )dt− αµtdt + σµdB
µ
t (for example,

when the effect is independent of r + α, we have X = (r + α)−1). We briefly comment

here how the proof of the proposition must be adjusted.

Fix X < 1; the bounds in the proposition change to AX = 1
X
A1, BX = X × B1,

and the last term in the equation (47) is scaled up by X2 (see (44)). Consequently,

dX = 1
X3d

1, cX = 1
X
× c1, GX(wX##) = 1

X7G
1(w1##). This results in the left-hand side

in the necessary inequality (50) multiplied by X−7 > 1.

Proof of Proposition 3. Part i) Suppose γ = σµ = 0. We show that the supremum

w∗ε of relational capitals achievable in the ε−optimal local SSE is increasing in σ−1Y , for

every ε > 0. Note that decreasing σY changes equation (19) in Proposition 2 only

by decreasing the last term. This means that if a pair of functions (F, I) satisfies the

conditions of Lemma 2 for some interval [w,w] and a given σY , then for any σ′Y with
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0 < σ′Y < σY there is a function I ≥ I such that the pair
(
F, I

)
satisfies the conditions

of Lemma 2 for σ′Y . Applying the result to the pair (Fε, I
∗
ε ) on the interval [0, wε] as in

the proof of Theorem 2, for any ε > 0, establishes the proof.

Part ii) Fix w = δ
8Cr

, with δ > 0. Proof of part ii) of Proposition 2 establishes

that a necessary condition for w∗ ≥ w is inequality (50). Substituting for γ, the formula

becomes

1

3

(
σY
r + α

)2
(
r + α +

√
α2 +

σ2
µ

σ2
Y

− α

)3

Cδ3 < 2 +
(r + α)

8CσY r

√
r + α +

√
α2 +

σ2
µ

σ2
Y
− α

.

(51)

When σY is close to zero, the left-hand-side is of order σ−1Y , whereas the right-hand-side

is of order σ
−1/2
Y . This establishes that w∗ ≤ w, when σY is sufficiently small.

Part iii). As a preliminary step, we show that a symmetric strategy profile {at, at}
is an SSE with associated relational capital process {wt} if and only if there is an L2

process {It} such that

dwt = (rwt − (at − c(at))) dt+ It × (dµt − [(r + α) 2at − αµt] dt) + dMw
t , (52)

where at = a((r + α) It), and {Mw
t } is a martingale orthogonal to {Yt}, and the transver-

sality condition E [e−rtwt]→t→∞ 0 holds.

The proof is identical to the first part of the proof of Lemma 1: since the process{
µt −

∫ t
0

[(r + α) 2as − αµs] ds
}

, scaled by σµ, is a Brownian Motion, it follows from

Proposition 3.4.15 in Karatzas (1991) that a process {wt} is the relational capital process

associated with {at, at}, defined in (7), precisely when it can be represented as in (52),

for some L2 process {It} and a martingale {Mw
t } orthogonal to {µt}.

As regards incentive compatibility, fix an alternative strategy {ãt} for player i and
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note that the relational capital satisfies

E{ãt,at}τ

[∫ ∞
τ

e−r(t−τ)
(
ãt + at

2
− c(ãt)

)
dt

]
= E{ãt,at}τ

[∫ ∞
τ

e−r(t−τ)
(
ãt + at

2
− c(ãt)

)
dt+ wτ +

∫ ∞
τ

d
(
e−rtwt

)]
= wτ + E{ãt,at}τ

[∫ ∞
τ

e−r(t−τ)
(
ãt + at

2
− c(ãt)

)
dt+

∫ ∞
τ

e−rt (dwt − rwtdt)
]

= wτ + E{ãt,at}τ

[∫ ∞
τ

e−r(t−τ)
(
ãt − at

2
− c(ãt) + c (at) + It (r + α) (ãt − at)

)
dt

]
,

where the first equality follows from E{ã
i
t,a
−i
t }

τ

[
e−r(t−τ)wt

]
→ 0, as t → ∞ (given that

efforts are bounded), and the last one follows from E{ãt,at}τ [dµt − [(r + α) 2at − αµt] dt] =

(r + α)E{ãt,at}τ [ãt − at] . Since continuation value and relational capital differ by a con-

stant, it follows from this representation and convexity of costs that there exists no

profitable deviating strategy for partner i if and only if her effort process satisfies at =

a((r + α) It).

We are now ready to establish part iii) of the proposition. From representation (52)

it follows that when wt ≥ ε > 0, then either the volatility satisfies Itσµ ≥ δ > 0, in order

to incentivize a strictly positive, more efficient effort, or the drift satisfies E{a
1
t ,a

2
t}

τ [dwt] ≥
δ > 0, to satisfy promise keeping (where δ depends on ε). It follows that if w0 > 0

then the process {wt} escapes to infinity with positive probability, which, given bounded

efforts, yields contradiction.

Proof of Proposition 4. Fix σµ > σ#
µ ≥ 0; we show that, for any ε > 0,

the corresponding suprema of relational capitals achievable in the ε−optimal local SSE

satisfy w#∗
ε ≥ w∗ε . The proof is very related to the proof of Proposition 3. One extra

complication is that now, changing the noise of the fundamentals also affects the boundary

conditions (21) in Lemma 2, via the effect on γ.

Specifically, note that decreasing σµ changes equation (19) in Proposition 2 only by

decreasing γ in the first term. Let γ# ≤ γ be the two corresponding gain parameters,

and let wε be the relational capital achievable in a ε−optimal local SSE with σµ, as in

the proof of Theorem 2, together with a pair of functions (Fε, I
∗
ε ) defined on [0, wε]. Let(

F#
ε , I

#∗
ε

)
extend the functions (Fε, I

∗
ε ) to the right by letting F#′′

ε (w) = F#′′
ε (wε) and

I#∗ε (w) = I#∗ε (wε), for w > wε, and let w#
ε be the first argument such that the boundary

condition (21) is satisfied. The existence of such w#
ε follows from the fact that at wε

24



condition (21) is violated, with the left-hand-side too small (due to γ# ≤ γ), and when w

increases and F#
ε decreases and approaches from above the value F (w) at which the drift

dies out, the left-hand-side is bounded away from zero, and the right-hand-side converges

to zero. It follows that for small σ#
µ and γ#, the pair

(
F#
ε , I

#∗
ε

)
satisfies conditions of

Lemma 2. This establishes the proof.
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