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Abstract

We study a continuous-time model of partnership with persistence and imperfect

state monitoring. Partners exert private efforts to shape the stock of fundamentals,

which drives the profits of the partnership, and the profits are the only public signal.

The optimal strongly symmetric equilibria are characterized by a novel differential

equation that describes the supremum of equilibrium incentives for any level of

relational capital. Under (almost) perfect monitoring of the fundamentals, the

only equilibria are (approximately) stationary Markov. Imperfect monitoring helps

sustain relational incentives and increases the partnership’s value by extending the

relevant time horizon for incentive provision. The results are consistent with the

predominance of partnerships and relational incentives in environments where effort

has long-term and qualitative impact and in which progress is hard to measure.
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1 Introduction

Partnerships are among the main forms of organizing economic activity. Characterized

by joint ownership, partnerships are common among individuals and businesses and con-

stitute one of the dominant forms of structuring a firm—along with corporations and sole

proprietorships.1 Furthermore, partnerships embody the incentive problem of motivating

members to exert private effort and contribute to the common good, which is common

to many organizations.

The ongoing, dynamic nature of joint ownership complicates the incentive problem

in a partnership. As an example, consider a start-up. On a daily basis, each partner

devotes effort to improving the venture’s fundamentals: upgrading the quality of the

product; broadening the customer base; facilitating access to external capital; improving

the internal organization; and more. Each of these fundamentals evolves over time,

affected by the partners’ efforts and by the circumstances. Moreover, none of them needs

to be directly observed by the partners, who see only how the fundamentals are gradually

reflected in the shared profits, customer reviews, or internal audits. At the same time,

the ongoing nature of joint ownership offers unique opportunities to solve the incentive

problem: it fosters relational incentives. A partner has incentives to work hard not only to

boost profits but also to boost observable outcomes, morale, and, ultimately, to increase

the future effort choices of the partners.

In this paper, we analyze incentives in a continuous-time model of partnership, with

a persistent, stochastic state—the fundamentals—that is imperfectly monitored by the

partners. Our first main contribution is to develop a method to solve the optimal strongly

symmetric equilibria in such games. We provide a novel ordinary differential equation that

characterizes the upper boundary of equilibrium incentives and the supremum of part-

nership values. Our second main contribution is to show that imperfect state monitoring

1According to the IRS data, in 2015 partnerships made up over 10% of all U.S. businesses,
and accounted for over 25% of total net business income; see https://www.irs.gov/statistics/

soi-tax-stats-integrated-business-data, Table 1. More broadly, teamwork, which shares the cen-
tral feature of collective rewards and free-riding, was utilized in close to 80% of U.S. businesses at the
turn of the century; see Lazear and Shaw (2007).
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may increase equilibrium payoffs. If fundamentals are perfectly monitored, the partner-

ship cannot provide relational incentives and relies on the unique Markov equilibrium—or

nearly so when fundamentals are monitored closely. Imperfect monitoring benefits part-

ners, in that it extends the time horizon for incentive provision, allowing future relational

rewards to motivate today’s effort. The results are consistent with the predominance of

partnerships and relational incentives in environments in which effort has long-term and

qualitative impact and in which progress is hard to measure.

In our continuous-time model, at any point in time, two partners privately exert costly

effort and evenly split the profits of their venture. Fundamentals change stochastically—

driven by the sum of efforts—and, in turn, equal the expected profit flow. In the model,

neither efforts nor fundamentals are observable and profits, which follow a Brownian dif-

fusion, are the partners’ only publicly available information. Our minimal monitoring

structure does not allow the signals to separately identify each partner’s effort (Fuden-

berg, Levine, and Maskin (1994)) and, consequently, we focus on the strongly symmetric

equilibria (SSE).

Partner’s effort increases the fundamentals of the partnership and, thus, profits in the

future. This benefits her in two distinct ways. First, she benefits directly by capturing

half of the increased profits. In our model, those Markov incentives are constant, resulting

in a unique, stationary Markov equilibrium (Proposition 1). Second, the increased profits

affect the partners’ effort decisions, such as when partners coordinate on relatively efficient

(inefficient) efforts after surprisingly high (low) profit realizations, indicative of high (low)

past efforts. The resulting relational incentives are our key focus.

The results in this paper rely on the persistent effect of effort and imperfect state

monitoring, which together lengthen the time horizon for incentive provision, in the

following sense. If the current profits depend only on current efforts (i.e., in a standard

i.i.d. repeated game) or if fundamentals are perfectly monitored (i.e., in a standard

stochastic game) then the rewards must be provided instantaneously. This is because

an increased effort brings about unexpectedly good news (high profits or increase of

fundamentals) only in the same period. Outside of those limiting environments, signals
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indicating increased effort today are spread over time. Rewards awarded for unexpectedly

high profits in the future provide incentives to exert effort today. This change has a

dramatic impact on the provision of relational incentives, as we discuss below.

First of all, poorer monitoring and the resulting increased time horizon for incentive

provision may improve relational incentives and, thus, benefit the partnership. The reason

is that relational rewards must take a form of a promise of an improved future relationship.

If the relationship is already at the bliss point, then immediate relational rewards are

unavailable.2 We show that when monitoring is (nearly) perfect and hence the horizon for

incentives is short, the absence of relational rewards at the bliss point of the relationship

(nearly) unravels the provision of incentives (Proposition 3). In contrast, with poor

monitoring, relational incentives do not unravel. In the absence of immediate rewards,

partners are incentivized to work at the bliss point by future rewards, accruing once

the relationship drifts down. The impossibility of relational incentives (Sannikov and

Skrzypacz (2007, 2010)) may be attributed to the assumption of perfect state monitoring,

and frequent moves or continuous-time modelling amplify its effect.

Second of all, the possibility of nontrivial relational incentives requires a novel method

to characterize the optimal incentive provision. Unlike in repeated games, the optimal

relational incentives in our setting are truly dynamic (in contrast to the “bang-bang”

result in Abreu, Pearce, and Stacchetti (1986)). The method we propose is based on

characterizing the upper boundary of relational incentives achievable in a local SSE,

under local incentive constraints, as a function of the expected value of future efforts

(relational capital, an equivalent of continuation value in an i.i.d. setting). Theorem 1

shows that the upper boundary of incentives satisfies an appropriate ordinary differential

equation and provides boundary conditions. The right-most argument characterizes the

supremum of relational capital and partnership’s value. Theorem 2 shows, roughly, that

a modified boundary is self-generating (as in (Abreu, Pearce, and Stacchetti, 1990)) and

defines a near-optimal local SSE.

2Indeed, in a Brownian diffusion model like ours, no immediate incentives can be provided at the bliss
point. Sannikov and Skrzypacz (2007) show that the impossibility persists in discrete-time models with
short period lengths.
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In our setting, with incentives as the value function, the law of motion of the state

variable (relational capital) depends, via effort chosen, on the level of the value function.

While the dependence is not allowed in standard stochastic control, we verify that the

characterization of the boundary in the form of an HJB equation is valid.3 Another

difficulty is familiar: In Theorem 3, we provide conditions on the primitives so that the

constructed strategies are not only locally, but fully incentive-compatible. We also provide

a general model and the HJB characterization (Theorem 4) and discuss application to

models of capital accumulation and oligopoly (Section 5).

Section 4 emphasizes the features of equilibrium dynamics and the effects on informa-

tion structure specific to relational incentives. Following good outcomes, partners increase

their efforts when relational capital is low, and decrease efforts when relational capital is

high (“rallying and coasting”). Relational incentives may increase when effect of effort

is more persistent. Improved monitoring may decrease partnership value, whereas less

stochastic fundamentals, or less uncertainty about the quality of the partnership is always

beneficial. This contrasts with the effects of information quality on career concerns or

on reputational incentives. Partnerships thus have an edge in environments that favor

established ventures, and in which the effects of effort are hard to measure or quantify

(such as in the professional sector, Levin and Tadelis (2005)). Finally, an established

partnership may unravel as a consequence of a short spat of bad outcomes, with hardly

any effect on its expected fundamentals (“Beatles’ break-up”.)

1.1 Related Literature

This paper belongs to the literature on free-riding in groups, in dynamic environments.4

The repeated partnership game was first studied by Radner (1985) and Radner, Myerson,

3We are aware of abusing the terminology. Formally, the optimality equation is not an HJB equation,
as the state variable depends on the objective function. However, the optimality equation has the exact
form of an HJB equation, with incentives F equal to the point-wise maximum, over all policies, of the
expected flow of incentives, plus the stochastic differential operator applied to function F . We believe
that the results are best viewed as extending stochastic control methods to allow for such dependency,
parallel to the results in Sannikov (2007) and Faingold and Sannikov (2020).

4See Olson (1971), Alchian and Demsetz (1972), Holmstrom (1982), as well as Legros and Matthews
(1993) and Winter (2004) for seminal contributions in static settings.
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and Maskin (1986), who demonstrate inefficiency of equilibria, and by Fudenberg, Levine,

and Maskin (1994), who pin down the identifiability conditions violated in the model;

Abreu, Pearce, and Stacchetti (1986) show that symmetric equilibria feature a “bang-

bang” property.

Our results provide a novel rationale for the impossibility of relational incentives

found in the literature. Abreu, Milgrom, and Pearce (1991) and Sannikov and Skrzypacz

(2007, 2010) show how frequent interactions may have a detrimental effect on incentives.

In particular, the discrete-time approximation of a Brownian model of partnership or

collusion in Sannikov and Skrzypacz (2007), which has either no persistence or a perfectly

monitored state, has no relational incentives.5 Faingold and Sannikov (2011) and Bohren

(2018) establish related results with one long-lived player in a competitive market setting.

We show that the impossibility is not inherent to continuous-time modeling but it is a

consequence of the monitoring structure instead. Moreover, our results complement the

discussion in Kandori and Obara (2006) and Rahman (2014), which show how relational

incentives may be restored using private strategies and communication.

Similarly, a number of papers establish that, broadly speaking, better information may

have a detrimental effect on a firm. In a model of non-contractible performance measures,

better monitoring can exacerbate the principal’s exploitation motive (see Zhu (2023)).

Lizzeri, Meyer, and Persico (2002) and Fuchs (2007) show the benefits of limiting the times

of feedback to the agent,6 whereas in Cetemen, Hwang, and Kaya (2020) limited feedback

may help partners by mitigating the ratchet effect. Similarly, in a linear Gaussian rating

model of Hörner and Lambert (2021), Bonatti and Cisternas (2020) show that putting

relatively much weight on old signals about a customer may mitigate the ratchet effect

and benefit the firm (see also Ball (2022)).7 Our paper identifies the negative effect of

better monitoring on relational incentives, due to the shorter time horizon for incentives.

5See, also, Sadzik and Stacchetti (2015) for the discrete-time approximation of the Brownian Principal-
Agent, rather than partnership model.

6In both models, improved monitoring, rather than limiting times when the feedback is observed,
would lead to stronger terminal incentives and more efficient contracts.

7Quick learning and ratchet effect also prevent nontrivial effort in Bhaskar (2014), in a model that
combines continuous and discrete choices.
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Our paper ties into the literatures on career concerns (see Holmström (1999) and

Cisternas (2017)) and on experimentation in teams (see Bolton and Harris (1999), Geor-

giadis (2014), and Cetemen, Hwang, and Kaya (2020) for Brownian models like ours).8

In career concerns models, equilibrium play depends only on beliefs about an exoge-

nous state;9 the literature on experimentation in teams studies the effects of payoff or

information externalities on incentives and focuses on Markov equilibria as well. Our

paper is complementary: It has production technology independent of history, with con-

stant Markov incentives, but we focus on optimal equilibria, which rely on relational

incentives.10 Hörner, Klein, and Rady (2022) investigate relational incentives in the ex-

perimentation in teams model.

Regarding our methodological contribution, the literature on dynamic contracting

with persistence has long recognized the difficulty of accounting for incentives and of

verifying global incentive compatibility (see Jarque (2010), Williams (2011), Prat and

Jovanovic (2014), Sannikov (2014), Prat (2015), DeMarzo and Sannikov (2016), and He

et al. (2017) for Brownian models like ours). Unlike in this literature, in our game

setting, incentives are not treated as a state variable but as a maximized objective. Our

HJB characterization, which allows for the evolution of the state variables to depend

on the level of the value function, is related to the HJB characterization in Sannikov

(2007), which allows the dependence on the slope of the value function, in a repeated

game setting (see, also, Faingold and Sannikov (2020)). Moreover, we provide conditions

on the primitives of the model for the global incentive compatibility, guaranteeing that

the solution of the relaxed problem is fully incentive-compatible (see Williams (2011),

Edmans et al. (2012), and Cisternas (2017) for related results).11

8See, among others, Keller, Rady, and Cripps (2005), Keller and Rady (2010), Klein and Rady (2011),
and Bonatti and Hörner (2011) for experimentation in teams with exponential bandit models. See, also,
Décamps and Mariotti (2004), Rosenberg, Solan, and Vieille (2007), Murto and Välimäki (2011), and
Hopenhayn and Squintani (2011) for related stopping games with incomplete information.

9Specifically, Cisternas (2017) provides a differential equation also for the stock of incentives, just as
in this paper, but in a differentiable Markov equilibrium, as a function of public beliefs about the state.

10In our near-optimal equilibria, working to rally the partnership is related to the encouragement effect
identified by Bolton and Harris (1999), and coasting is reminiscent of the work-shirk-work dynamics in
the reputation model of Board and Meyer-ter Vehn (2013).

11See, also, Sannikov (2014), and Prat (2015), who provide analytical conditions on the solution of the
relaxed problem, under which the first-order approach is valid.
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Finally, we interpret our results as providing a rationale for the prevalence of part-

nerships in industries with poor monitoring of the venture’s progress. In particular,

as documented by Von Nordenflycht (2010), “opaque” quality is a key characteristic of

the knowledge-intensive environment of the professional sector, where partnerships are

prevalent.12 Our results are related to Levin and Tadelis (2005), who rely on partner-

ship’s comparative advantage in industries where employee quality is hard to evaluate,

and to Morrison and Wilhelm (2004), who focus on partnership’s impact on fostering

mentorship relations.

2 Framework

2.1 Model

Two partners, who are risk-neutral and discount the future at a rate r > 0, play the

following infinite horizon game: At every moment in time, t ≥ 0, each partner i chooses

effort ait from an interval [0, A].13 Time t total effort contributes to the stock of funda-

mentals of the partnership, µt, which depreciates over time at a constant rate α > 0. At

any point in time, the stock of fundamentals is the mean of the partnership flow profits

dYt,

dµt = (r + α) (a1t + a2t )dt− αµtdt+ σµdB
µ
t , (1)

dYt = µtdt+ σY dB
Y
t ,

where {Bµ
t } and {BY

t } are two independent Brownian Motions.14 The multiplicative

constant, r + α, normalizes the total productivity of effort to one, regardless of the

depreciation rate of the fundamentals or of the discount rate.15 Finally, profits are the

12See Empson (2001) and Broschak (2004) for further references.
13The upper bound on the effort is used to guarantee boundedness of continuation value in Propositions

1 and 3, part iii). In all simulations, as well as in Theorem 2, the bound A is large enough so that
equilibrium efforts are interior. Lemma 10 in Appendix A.3 bounds the relational incentives and, so, the
efforts in a near-optimal equilibrium.

14Unless specified explicitly, all processes in this paper are indexed by t ≥ 0.
15The constant is analogous to 1 − δ, which scales the stage game payoffs in repeated game analysis,

where δ is the discount factor. The only results in which the normalization plays a role are the compar-
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only publicly observable signal.

Exerting effort a entails a private flow cost c (a), where c(·) is a twice differentiable,

strictly convex cost of effort function. We normalize c(0) = 0 and c′(0) = 1
2

(see Propo-

sition 1), and in some of the results we further restrict the cost function to be quadratic

(see Sections 3.2 and 4). Finally, at each point in time, partners split the profits evenly.

Thus, given effort choices of both partners, a player’s continuation payoffs are given by

W i
τ = E{a

1
t ,a

2
t }

τ

[∫ ∞
τ

e−r(t−τ)
(µt

2
− c(ait)

)
dt

]
.

Our partnership game has three features that extend the classic repeated-game frame-

work: effort has persistent effect, state is imperfectly monitored, and partners learn about

the fundamentals. Specifically, fundamentals, which are the state variable in the game,

change only gradually over time driven by the efforts of the partners. Persistence of

fundamentals implies that actions have a persistent effect: total effort today adds to the

fundamentals, and, thus, also to the profit flow at any later time,

µτ = e−ατµ0 +

∫ τ

0
e−α(τ−t)(r + α)

(
a1t + a2t

)
dt+ σµB

µ
τ .

Secondly, fundamentals need not be observed by the partners, who observe only noisy

profit signals. Together with persistence, this implies that all future profits are useful sig-

nals of current efforts (see Proposition 1). Thirdly, fundamentals need not be determined

by the efforts, and are changing stochastically. Alternatively, fundamentals are a sum of

two terms: one that depends entirely on the past efforts of the partners, and the other that

is purely stochastic, and reflects an unknown quality of the partnership. Consequently,

in equilibrium partners do not know and keep on learning about the fundamentals.

The three features are parametrized in the model by α, σY , σµ ≥ 0.16 Their impact

on the incentive provision in a partnership is one of the central themes of the paper, and

ative statics in Propositions 2, in which we show that equilibria with a nontrivial level of effort exist as
r+α+ γ converges to zero—even as the marginal benefit of effort on fundamentals, r+α, disappears—
and no effort is exerted in any equilibrium as r+α+ γ converges to infinity—even as the effect of effort
on fundamentals gets arbitrarily high. Both results continue to hold without the normalization, as we
verify at the end of each proof, in Appendix A.5.

16We require that either σY or σµ is strictly positive, to avoid the familiar complications in defining a
continuous-time strategy in a game with perfect monitoring.
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we discuss it at length in the following sections.

Public Beliefs Let µτ = E{a
1
t ,a

2
t }

τ [µτ ] denote the public expected level of fundamentals

at time τ , given efforts {a1t , a2t}. A simple application of the Kalman-Bucy filter yields

that µt follows

dµt = (r + α) (a1t + a2t )dt− αµtdt+ γt[dYt − µtdt], (2)

for an appropriate gain parameter γt, dYt = µtdt+σY dBt, and a Brownian Motion {Bt}.
We assume that, initially, partners believe that µ0 is Normally distributed with steady-

state variance σ2. This implies that both the posterior estimate variance σ2
t and the gain

parameter γt remain constant throughout the game and equal (see Liptser and Shiryaev

(2013))

γ =

√
α2 +

σ2µ
σ2Y
− α, and σ2 = γ × σ2Y . (3)

2.2 Equilibrium

A player’s (pure, public) strategy {ait} is a progressively measurable process that depends

on the public information {Yt} and allows for public randomization. A pair of public

strategies, {a1t , a2t} , is a Perfect Public Equilibrium (PPE) if, for each partner i at any

time τ ≥ 0,

E{a
i
t,a
−i
t }

τ

[∫ ∞
τ

e−r(t−τ)
(µt

2
− c(ait)

)
dt

]
≥ E{ã

i
t,a
−i
t }

τ

[∫ ∞
τ

e−r(t−τ)
(µt

2
− c(ãit)

)
dt

]
, (4)

following any history, for any possible alternative strategy {ãit}.17

Markov Equilibria Our model is linear: the evolution of the state µ is linear in

the sum of efforts and the evolution of expected profits is linear in the state.18 As a

17We discuss other notions of a strategy in Section 6. Specifically, given pure strategies, players have
no private signals in the game, and any pure strategy is public. We note that a public strategy does not
restrict a partner to condition only on the public expectation µτ , or to revert to the equilibrium path
immediately after a deviation; say, a strategy that lets a partner shirk first, and then play depending on
own estimate of the fundamentals depends only on clock time and public signals. (Indeed, establishing
conditions under which “double deviations” are not optimal is one of the main technical results in the
paper; see Theorem 3).

18In Section 5 we extend the model to allow for non-linearities.
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consequence, it has a unique Markov Equilibrium, in which play depends on the past

history only via the minimal set of payoff-relevant parameters, with stationary efforts.19

Proposition 1 A pair of constant strategies {at, at} in which partners never exert effort,

at = 0, for every t ≥ 0, constitutes a PPE. It is the unique stationary PPE, and so it is

the unique Markov equilibrium.

The argument is as follows. Exploiting the linear structure of the model, we may

rewrite the continuation payoffs as

W i
τ = E{a

1
t ,a

2
t }

τ

[∫ ∞
τ

e−r(t−τ)
(
µτ
2
e−α(t−τ) +

∫ t

τ
(α+ r)

a1s + a2s
2

e−α(t−s)ds− c(ait)
)
dt

]
(5)

=
1

2 (r + α)
E{a

1
t ,a

2
t}

τ [µτ ] + E{a
1
t ,a

2
t}

τ

[∫ ∞
τ

e−r(t−τ)
(
a1t + a2t

2
− c(ait)

)
dt

]
.

The first term in the last line of (5) captures the expected value of “inherited” (ex-

pected) fundamentals to a partner. Even if at some time τ partners stop exerting effort,

the fundamentals will only slowly revert to zero, yielding profits all along. The second

term is the forward-looking expected value of efforts undertaken in the future. Crucially,

it is not affected by the fundamentals: both the marginal effect of effort on fundamentals,

(r + α) dt, and the marginal value of fundamentals, 1
2(r+α)

, are constant. Thus, the effort

aM in the unique Markov equilibrium is constant, with marginal cost one half.

Our assumptions on the cost of effort normalize both the level of effort, as well as

the continuation payoffs in the Markov equilibrium, to zero. We say that a partnership

unravels if, from that point on, partners exert no more effort—that is, they play the

Markov equilibrium.

We highlight that the Markov equilibrium is inefficient. As partner’s effort benefits

the two partners equally, the marginal social benefit of effort is twice higher than the

incentives in the Markov equilibrium. In the rest of the paper we show how much of this

gap can be bridged with non-Markovian, relational incentives.

19See Maskin and Tirole (2001) and Mailath et al. (2006) for the formal definition of Markov Equilib-
rium.
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Strongly Symmetric Equilibria The only information about the partners’ efforts

is provided by the stream of profits. As both partners’ efforts enter profits additively, it

is not possible to identify which of the partners did, and which one did not, contribute

to the common good (Fudenberg, Levine, and Maskin (1994)). Thus, as in the classic

analysis of repeated duopoly by Green and Porter (1984) or of partnerships by Radner,

Myerson, and Maskin (1986), it is not possible to provide incentives by “transferring”

continuation value between the agents via asymmetric play, shifting resources from likely

deviators.

Therefore, we concentrate throughout the paper on equilibria in which players choose

symmetric strategies, conditioning the provision of effort on the public history available

to them in the same way.20 Formally, a Strongly Symmetric Equilibrium (SSE) is a PPE

in which the strategies {a1t , a2t} satisfy a1τ ≡ a2τ , after every public history in Ft.

Accounting of Incentives and Local Strongly Symmetric Equilibria Define

relational capital wτ as the expected discounted payoff from future efforts, that is the

continuation value net of the expected value of the current fundamentals,

wτ := Wτ −
1

2 (r + α)
E{at,at}τ [µτ ] = E{at,at}τ

[∫ ∞
τ

e−r(t−τ) (at − c(at)) dt
]
. (6)

Relational incentives are constructed by conditioning future play, and so relational

capital, on public signals. Specifically, when a partner increases effort, future high profit

outcomes become more likely. For fixed strategies of the partners, this changes the

probability distribution of efforts in the future. We define relational incentive Fτ as the

marginal benefit of effort net of Markov incentives, or, equivalently, as the marginal effect

of effort on relational capital. Formally,

Fτ :=
∂

∂ε
E{at,at}τ

[∫ ∞
τ

e−r(t−τ) (at − c(at)) dt
]
, (7)

for revenue processes dY ε
t = µεtdt + σY dBt, where µετ = µτ + ε (r + α) and µεt evolves as

20See discussion in Section 6.
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in (2), with ε > 0.

A necessary condition for a symmetric equilibrium is that effort is locally optimal.

That is, for a level of relational incentives Fτ ,

a(Fτ ) = arg max
a
{(Fτ + 1/2)× a− c(a)} . (8)

A local Strongly Symmetric Equilibrium (local SSE) is a profile of symmetric strategies

such that, following any history, actions are locally optimal, aτ = a(Fτ ), for the function

a(·) defined in (8), and Fτ as in (7). Finally, let E be the set of relational capital-

incentive pairs (wt, Ft) achievable in a local SSE. We parametrize its upper boundary by

F , F (w) = {sup Ft|(wt, Ft) ∈ E}.21

3 Solution

This section contains the main technical results of the paper. It characterizes the set

of relational incentives and relational capitals that can be delivered in a local SSE. It

also constructs (nearly) optimal local SSE, and provides conditions for them to be fully

incentive compatible.

As the first step, the following lemma shows how relational capital and relational

incentives must evolve in a local SSE. Throughout this section, fundamentals can be

determined by past efforts or stochastic, σµ ≥ 0, but they are imperfectly monitored,

σY > 0.

Lemma 1 A symmetric strategy profile {at, at} with bounded relational capital and re-

lational incentives processes {wt} and {Ft} is a local SSE if and only if there is a L2

process {It} such that

dwt = (rwt − (at − c(at))) dt+ It × (dYt − µtdt) + dMw
t , (9)

Fτ = E{at,at}τ

[∫ ∞
τ

e−(r+α+γ)(t−τ) (r + α) Itdt

]
,

21F is a partial function, defined only over the relational capitals achievable in a local SSE.
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and actions satisfy at = a(Ft), where {Mw
t } is a martingale orthogonal to {Yt}.

The first equation in the lemma is a version of the “promise keeping” accounting for

the continuation value (see Sannikov (2007)). If the current flow of relational capital is

lower than the average promised flow, then the relational capital must deterministically

increase in the next period, and vice versa. Moreover, relational capital also changes

stochastically in response to the unexpected profit realizations, dYt − µtdt, with linear

sensitivity It. The martingale process captures the possibility of public randomization.

A key intuition behind the second equation in (9) is that a deviation to a higher

effort today results in fundamentals above the publicly expected level not only now, but

throughout the future (see, also, Prat and Jovanovic (2014), Sannikov (2014), and Prat

(2015)). This means unexpectedly good news—profits higher than expected—throughout

the future, which keep pushing relational capital up (when sensitivities It are positive).

After a deviating effort, the wedge between the private and public expectation of the

fundamentals reverts to zero gradually, at a rate α + γ. The first term is the exogenous

rate of decay of the fundamentals. The second term is the endogenous speed of learning

from profits about the fundamentals (Equation (2)). For instance, an off-equilibrium

increase in effort leads to an unexpectedly high stream of profits. Upon observing it, the

public attributes part of the higher profits to a permanent change in partnership’s quality

(due to it being stochastic) and part of it to transient luck this period (due to imperfect

monitoring), used for incentives. The first effect is incorporated into higher expectation

of fundamentals, and so higher expectation of profits. Hence, as the stream of higher-

than-expected profits realizes, the wedge between the private and public expectation

shrinks.

One way to think about the effect of learning is that, following an off-equilibrium

increase in effort, the realized higher-than-expected profits are gradually attributed to a

persistent exogenous change in partnership’s quality (in similar fashion as in Holmström

(1999)). Note also that when fundamentals are deterministic, σµ = 0, partners do not

learn in equilibrium, γ = 0. We discuss the effect of learning on relational incentives in

more detail in Section 4.2.

14



Lemma 1 identifies relational capital and incentives as two variables that characterize

any local SSE. The following second step establishes an HJB characterization of F , the

boundary of the set of relational capital-incentive pairs achievable in a local SSE.

Theorem 1 The upper boundary F of relational incentives achievable in a local SSE is

concave and satisfies the differential equation

(r + α+ γ)F (w) = max
I

{
(r + α)I + F ′(w) (rw − [a(F (w))− c(a(F (w)))]) +

F ′′(w)σ2Y
2

I2
}

= F ′(w) (rw − [a(F (w))− c(a(F (w)))])− (r + α)2

2σ2Y F
′′(w)

, (10)

on [0, w∗), as well as the boundary conditions

F (0) = 0,

lim
w↑w∗

{
(r + α+ γ)F (w)− F ′(w) (rw − [a(F (w))− c(a(F (w)))])

}
= 0, (11)

lim
w↑w
{rw − [a(F (w))− c(a(F (w)))]} = 0,

where w∗ is the supremum of the relational capitals achievable in a local SSE. Moreover,

w∗ is not attained by any local SSE.

Theorem 1 provides a characterization in the form of a differential equation and bound-

ary conditions of the supremum F of relational incentives achievable in a local SSE. In

the first line of equation (10), the left-hand side is the average flow of relational incen-

tives needed to generate the stock of relational incentives F (w), given the exponential

discounting, mean reversion, and learning. The right-hand-side of (10) has the form of

an HJB equation for the problem of maximizing relational incentives F as a function of

relational capital. It is the point-wise maximum, over all policies I, of the expected flow

of relational incentives plus the stochastic differential operator applied to F . Specifically,

the first term captures the flow of relational incentives; the second term captures the

change in the relational incentives resulting from the drift in relational capital; and the

last term captures the loss (since the boundary is concave) resulting from the second-order

variation in relational capital.
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The first boundary condition in (11) says that the relational incentives in any local

SSE with no relational capital must be zero—just as in the Markov equilibrium.22 The

second boundary condition is equivalent to the volatility I of the relational capital dying

out close to the right boundary. It means that close to the bliss point, good outcomes

are not rewarded, and bad outcomes are not punished; the flow of relational incentives

dies out. The last boundary condition requires also the drift of the relational capital to

die out.23

Theorem 1 also shows that the supremum relational capital is not attainable, and so

an optimal local SSE does not exist. This follows from the last two boundary conditions

in (11), which imply that the supremum relational capital would have to be the outcome

of a stationary—and, hence, Markov—equilibrium. The construction of near-optimal

local SSE is achieved in the following result.

Formally, the non-existence of the optimal local SSE hinges on the openness of the

set of strictly positive yet arbitrarily small policies {It}, in the local SSE that approxi-

mate the unattainable supremum w∗ (second boundary conddition in 11). To guarantee

existence, we now restrict attention to a class of local SSE, with sensitivities It of rela-

tional capital with respect to profit flow either zero or weakly above ε, for ε > 0. This

yields self-generation of the upper boundary Fε in the following theorem.24 A local SSE

is called ε-optimal if it belongs to such class and gives rise to relational capital close to

the supremum.25

22The result follows from our assumption that the Markov equilibrium effort 0 is also the lowest
available effort. Allowing negative efforts and, thus, efforts below the Markov level, will allow players to
“burn more value” in equilibrium and might help enlarge the set of SSE. Formally, with negative effort,
the differential equation (10) and the right boundary conditions in Theorem 1 would not change, but the
left boundary condition w ≤ 0 would become free. It is easy to establish that just as (0, 0), the point
(w,F (w)) must belong to the set of pairs (w,F ) with zero drift.

23Positive drift or volatility would lead to an escape of relational capital beyond the supremum. Also,
if the drift were strictly negative, one could generate relational capital above w∗ simply by letting it drift
down.

24We point out that there might be other types of approximately optimal local SSE. The class that
we chose has an additional benefit of numerical tractability; in Appendix A.3 we provide the bounds on
the first two derivatives of the functions Fε in Theorem 2. In contrast, note that the equation (10) in
Theorem 1 has F ′′ arbitrarily small close to the right boundary.

25Formally, we require the distance to the supremum to be vanishing in ε. The equilibria in the next
theorem, in particular, achieves distance of order O(ε1/3).
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Theorem 2 For ε > 0, consider local SSE with sensitivities It of relational capital with

respect to profit flow either zero or weakly above ε. The upper boundary Fε of relational

incentives achievable in a local SSE under this constraint is concave and satisfies the

differential equation

(r + α+ γ)Fε(w) =

max
Iε∈[ε,∞)

{
(r + α)Iε + F ′ε(w) (rw − [a(Fε(w))− c(a(Fε(w)))]) +

F ′′ε (w)σ2Y
2

I2ε

}
(12)

on [0, w∗ε ], as well as the boundary conditions

F (0) = 0,

(r + α+ γ)F (w∗ε)− F ′(w∗ε) (rw∗ε − [a(F (w∗ε))− c(a(F (w∗ε)))]) = 0, (13)

rw∗ε − [a(F (w∗ε))− c(a(F (w∗ε)))] < 0,

where w∗ε is relational capital achieved in an ε-optimal local SSE. Moreover, for any

solution of differential equation (12) with boundary conditions (13) on an interval [0, wε],

there is a local SSE achieving wε.

The result provides a tool to find the (approximate) supremum of relational capitals

achievable in local SSE. Any function solving the differential equation together with

the boundary conditions defines an achievable level of relational capital. The right-most

argument of the solution that reaches furthest to the right is the (approximate) supremum.

Secondly, the function Fε in the theorem provides a recipe for constructing near-

optimal local SSE (see Lemma 2 in the next section). In Figure 1, Fε is the highest

inverse parabola, which reaches furthest to the right. At any point in time, for any value

of relational capital, the function determines relational incentives, and so the marginal

benefit of effort. This pins down the equilibrium effort and also the relational capital in

the next instant: it drifts deterministically—say, decreases if the flow benefits are large

relative to the relational capital—but also responds to the stochastic news about the

profit flows (see Lemma (1)). The sensitivity to those news is the one that maximizes

expression (12) and, again, is pinned down by function Fε and its second derivative. In
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the next instant, the game continues with updated relational capital (as described) and

beliefs about the fundamentals (see Equation 2).

This figure displays many different solutions of the differential equation (12), with the near-
optimal local SSE characterized by the curve that reaches farthest to the right. The horizontal
parabola is the locus of the feasible relational capital-incentives pairs (w,F ) that can be achieved
by symmetric play in a stage game, satisfying rw = a(F ) − c(a(F )). The efficient pair is
(200, 1/2).

Figure 1: Relational Incentives in a Near-optimal SSE

3.1 Verification

The full proofs of Theorems 1 and 2 are in Appendices A.2 and A.3. Here we state two

crucial lemmas, which jointly correspond to the Verification Theorem from the stochas-

tic control literature.26 These lemmas highlight why we may not rely on the existing

verification results.

Lemma 2 Let E : [w,w]→ R be a C2 strictly concave function that satisfies the differ-

ential inequality

26See, e.g., Yong and Zhou (1999), Theorem 5.5.1, for a textbook treatment.
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(r + α + γ)E(w) ≤ max
I

{
(r + α)I + E ′(w) (rw − [a(E(w))− c(a(E(w)))]) +

E ′′(w)

2
σ2
Y I

2

}
= E ′(w) (rw − [a(E(w))− c(a(E(w)))])− (r + α)2

2σ2
YE
′′(w)

, (14)

where a is defined in (8), together with boundary conditions for each w∂ ∈ {w,w}:

E(w∂) ∈ E , (15)

or,

(r + α+ γ)E(w∂) = E′(w∂)
(
rw∂ −

[
a(E(w∂))− c(a(E(w∂)))

])
, (16)

sgn

(
w + w

2
− w∂

)
= sgn

(
rw∂ −

[
a(E(w∂))− c(a(E(w∂)))

])
.

Then each point on the curve is achieved by a local SSE, (w0, F (w0)) ∈ E for w0 ∈ [w,w].

The result implies that any solution E of the HJB equation (10)—equation version

of (14)—with boundary conditions (15-16) provides a lower bound for the supremum F

of relational incentives achievable in a local SSE. The proof also constructs local SSE,

based on the maximizer in (14), that achieve relational incentives E(w). Hence, the result

corresponds to one half of a Verification Theorem.

In further detail, Ito’s formula implies that if {wt} is the relational capital that follows

(9) with policies {It} = {I∗(wt)}, where I∗(w) is the point-wise maximizer (“feedback

control”) and E is a solution to the HJB equation (10), then {E(wt)} is the associated

process of relational incentives, as in Lemma 1. When relational capital reaches a bound-

ary point that is known to be achievable by a local SSE, the game simply follows this

local SSE. Under the alternative boundary conditions (16), relational capital is reflected

back, and the construction as above continues.27, 28. The lemma is a convenient tool

27More precisely, the stock of incentives E
(
w∂
)

at the boundary can be generated by having either

I
(
w∂
)

= 0, with relational capital drifting back inside of [w,w], or I(w∂) = −2 r+α
σ2
Y E

′′(w)
> 0. In the

proof in Appendix A.3, we show how to reduce the second case to the first one by extending the functions
E and I beyond [w,w], with I = 0.

28When (14) is an inequality, the construction is analogous, but with a continuous feedback control
function I : [w,w] → R+, I(w) ≥ I∗(w), for which (14) holds with equality. The existence of such
function I follows from strict concavity of E.
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to find non-trivial, tractable—not necessarily optimal—local SSE (see, for example, the

proof of Proposition 2)

Lemma 3 For any λ > 0, let Eλ : [w,w] → R be a concave function that satisfies the

differential inequality

(r + α+ γ)Eλ(w) ≥ max
I

{
(r + α)I + Eλ′(w)

(
rw −

[
a(Eλ(w))− c(a(Eλ(w)))

])
+
Eλ′′(w)σ2Y

2
I2
}

+ λ

= Eλ′(w)
(
rw −

[
a(Eλ(w))− c(a(Eλ(w)))

])
− (r + α)2

2σ2YE
λ′′(w)

+ λ, (17)

on an interval [w,w], together with
∣∣Eλ′

∣∣ ≤ 1/λ and the boundary conditions Eλ(w) =

F (w) and Eλ(w) = F (w). Then there is δ := δ(λ) > 0 such that it is not possible that

the boundary F reaches locally above Eλ,

Eλ(w) < F (w) ≤ Eλ(w) + δ, for w ∈ (w,w) .

The lemma above establishes a novel escape argument and, hence, the second half

of Verification Theorem for our setting. If the law of motion of wt did not depend on

the level of the value function (relational incentives), as in a standard stochastic control

problem, the result would hold with λ = 0 and δ = ∞. Any value above the solution

of an HJB equation could be justified only by it drifting ever higher. In other words, a

solution E of the HJB equation (10) with the given boundary conditions would provide

an upper bound for the supremum F of relational incentives achievable in a local SSE.

In our setting, the level of the value function (relational incentives) affects the law

of motion of the state variable, by determining the effort at. Thus, relational incentives

higher than the solution to (10) may increase the right-hand side of the HJB equation.

The lemma establishes only a “local” version of the bound: the boundary F of relational

incentives cannot reach locally above (a local perturbation of) a solution E of the HJB

equation, with given boundary conditions.

The proofs of Theorems 1 and 2 show how Lemmas 2 and 3 are sufficient to establish

the characterizations. In particular, they establish that the boundaries F and Fε are

smooth and satisfy the HJB equation (10), and derive the respective boundary conditions.
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3.2 Global Incentive Compatibility

So far, we have characterized local equilibria. The following result shows conditions on

the primitives, under which local SSE satisfy full incentive-compatibility constraints. For

simplicity, in the remaining results we assume that the cost of effort is quadratic:29

(Quadratic Cost) c(a) =
1

2
a+

C

2
a2. (18)

Theorem 3 Fix ε > 0 and consider an ε−optimal local SSE {at, at}. Then, {at, at} is an

SSE when CσY is sufficiently high, where C is the second derivative of the cost function

and σY is observational noise.

The problem in establishing global incentive compatibility consists in showing that,

after any history, the effort choice is concave. Given that the effort cost function is

strictly convex, with the second derivative C, this boils down to establishing bounds on

how convex the expected benefit of effort is. Crucially, in a dynamic environment with

persistence, like ours, a deviation affects the strength of incentives that the agent faces

in the future. This knock-on effect makes accounting for the benefits of deviations much

more involved than in a static setting, or without persistence.

Following up on this intuition, in order to bound how convex the benefit of effort is,

it is sufficient to establish a uniform bound on how sensitive the relational incentives are

with respect to public signals. The first part of the proof is related to the results in the

literature and shows that there are no global deviations from a local SSE if this sensitivity

of relational incentives is uniformly bounded (see Williams (2011), Edmans et al. (2012),

Sannikov (2014), and Cisternas (2017)).

In the second part of the proof, we bound this endogenous sensitivity of relational

incentives by a function of the primitives of the model. This part of the proof relies

29Quadratic costs greatly simplify deriving the bounds in Theorem 3 and the propositions in Section
4, but we are confident that the result can be extended to more general cost functions. Equation 41 in
Appendix A.4 provides a precise sufficient condition on the parameters that guarantees global incentive
compatibility.
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heavily on the analytical tractability of our solution and, in particular, the bounds on

derivatives F ′ε and F ′′ε , established in the proof of Theorem 2. Intuitively, large noise

σY makes incentives costly, resulting in their low sensitivity and, thus, in their relatively

linear benefit of effort.

4 Information Structure and Partnership

The informational environment of a partnership, in our setting, is determined by three

parameters (see Section 2.1). First, partnerships differ by how persistent are the effects

of partners’ efforts and decisions. This is captured by the speed of depreciation, or

mean-reversion of the fundamentals, α. Second, partnerships differ by how well their

fundamentals are monitored, and so how well the progress of the venture can be tracked

and assessed. This is captured by the degree of noise in the public signals, σY . Third,

partnerships differ by the level of uncertainty about the quality of the venture or the

partners. This is captured by the degree of volatility of the fundamentals, σµ.

In this section, we investigate separately how the three dimensions of the information

structure affect the partnership’s value. (Note that efforts in the Markov equilibrium do

not depend on the information structure; see Proposition 1). We begin by establishing the

conditions on the informational environment for the existence of non-trivial equilibrium.

At the end we extend the model to allow for career concerns and compare the effects of

the informational environment on career and relational incentives.

4.1 Persistence and Non-Trivial Equilibria

Relational incentives are discounted at a rate of r + α + γ, which accounts for the time

preference, the persistence of the fundamentals, and learning. In the simplest case of no

learning, γ = 0, and in an environment most conducing to relational incentives, when

partners are patient, r ≈ 0, the “discount rate” is then determined by the persistence

of partners’ effort α. The next proposition establishes that the characterization in the

previous section is not vacuous, and nontrivial local SSE exist exactly when this “discount

22



rate” is low.30 Global incentive compatibility, when CσY is large, follows from the proof

of Theorem 3.

Proposition 2 Fix the ratio r+α+γ
r

. i) The supremum of relational capitals achievable

in a SSE is strictly positive when r + α + γ is sufficiently small, and CσY is sufficiently

large. ii) In contrast, if r + α + γ is sufficiently large, then the supremum of relational

capitals achievable in local SSE is arbitrarily close to zero.

The “discount rate” r+α+γ determines the time horizon for the provision of incentives

(see Proposition 1). To motivate today’s effort when the rate is high, high-profit outcomes

must be rewarded soon—either because partners do not care much about the future, the

effect of effort on profits wears off quickly, or the effect is quickly attributed to a change

in partnership’s quality.

Relational incentives die out when the “discount rate” is high enough for the following

two reasons. The first reason is specific to relational incentives: at the bliss point of the

highest relational capital, partners cannot be rewarded for high-profit outcomes. This is

because rewards must be meted out in increased relational capital, which is not possible

when relational capital is already at its highest. The second reason relies on the “short

periods”, with signals coming in continuously and hence with small precision. With poor

quality of signals, instant incentives require both punishments and rewards—for bad and

good signals, respectively (see Abreu, Milgrom, and Pearce (1991) and Sannikov and

Skrzypacz (2007, 2010)). Intuitively, with imprecise signals, rewards and punishments

are used incorrectly very often, and so both are needed for the two errors to cancel out.31

It follows that, if the time horizon for incentive provision is short, then the partners

cannot be incentivized to exert effort at the bliss point. The construction of relational

incentives essentially unravels.32

30Formula 44 in Appendix A.5 provides precise sufficient conditions on the parameters that guarantee
existence.

31In the continuous-time Gaussian setting, the incentives have even more structure: not only both
rewards and punishments must be used, but relational capital must be linear in the Gaussian signal; see
Proof in Appendix A.5.

32Relational capital at a bliss point must be low because it is a weighted average between the current
benefit—close to zero when efforts are low—and the future relational capital, which can only be lower.
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In contrast, with a low “discount rate” on incentives, nontrivial relational incentives

are possible. In an equilibrium, good profit outcomes are always rewarded, when the

relational capital of the partnership is in the workaday interior ranges. Hence, upon

reaching the bliss point, partners exert effort because it will be rewarded later, once the

relational capital drifts down. Waiting does not destroy much of the incentives since the

discounting is low.

One implication is that relational incentives may increase when the effects of partners’

efforts are more long-lasting and persistent (α decreases). A partnership may be a more

appropriate form of organizing a firm when partners make strategic decisions that deter-

mine the future of the venture (α low), rather than make routine decisions that execute

well established blueprints and keep the revenue flowing (α high).

Dynamics. This structure of incentives close to the bliss point affects the equilibrium

dynamics of effort, in a non-trivial near-efficient equilibrium. Profit outcomes that exceed

expectations are always good news for the partnership, increasing relational capital, as

It ≥ 0. However, they do not always lead to greater effort.

On one extreme, when a partnership runs out of relational capital, the partnership

unravels, relational incentives disappear, and no effort is taken in the future. When

relational capital is low, a good outcome that increases relational capital prolongs the life

of a partnership and hence increases relational incentives and effort. Formally, function

Fε is increasing in this range.

On the other extreme, close to the bliss point the flow of incentives vanishes and part-

ners are motivated by the relational incentives from the future, once relational incentives

drift down. A good outcome only postpones the arrival at the interior ranges, and hence

decrease relational incentives and effort. Formally, function Fε is decreasing in this range.

Corollary 1 In a near-optimal local SSE there is a threshold level of relational capital,

w#, such that i) at relational capitals below w# high profit realizations dYt increase equi-

librium effort (“rallying”), and ii) at relational capitals above w# high profit realizations

dYt decrease equilibrium effort (“coasting”).
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(a) A short-lived partnership
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(b) A long-lived partnership

Each panel displays a sample path of effort (on the left axis) and relational capital (on the right
axis) over time, starting near the supremum relational capital. The horizontal line represents
the level of relational capital at which effort is maximized. Initially players coast, and the
relational capital drifts down, undisturbed by shocks. When relational capital is above the
horizontal line, profit outcomes that increase relational capital lead players to exert less effort.
Changes in effort and relational capital are negatively correlated. When relational capital is
below the horizontal line, changes in effort and relational capital are positively correlated.

Figure 2: Effort and Relational Capital over Time

4.2 Monitoring the Partnership

The equilibrium in our dynamic environment is inefficient because partners do not observe

each other’s effort. Otherwise, they could sustain efficiency by reverting to the inefficient

Markov equilibrium following any spat of shirking.33 It seems thus compelling that better

monitoring of the fundamentals in our game should increase the partnership’s value. The

following proposition shows that this intuition captures only part of the story.

Proposition 3 i) Suppose fundamentals are deterministic, σµ = 0. The supremum w∗ of

relational capital achievable in a local SSE is increasing in the precision of the monitoring

technology σ−1Y . ii) Suppose the fundamentals are stochastic, σµ > 0. The supremum w∗

of relational capital achievable in a local SSE is arbitrarily close to zero, when monitoring

is precise enough (σ−1Y sufficiently large). iii) Suppose the fundamentals are stochastic,

33Modeling a continuous-time game with perfect monitoring runs into the usual problems. However,
“Grim-Trigger” strategies approximate efficiency in a discrete-time approximation of the game, given
that periods are “short” and so discount factor arbitrarily close to one, and the MinMax strategy is a
stage-game Nash equilibrium.
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σµ > 0, and monitored perfectly, σY = 0. The unique SSE is the Markov equilibrium,

with relational capital w = 0.

When there is no uncertainty about the quality of the partnership and fundamentals

are deterministic, better monitoring always improves efficiency (part (i) of the proposi-

tion). The intuition is simple: absent uncertainty about the quality, the public signals are

used solely as signals of effort, and better monitoring mitigates informational frictions.34

When the quality of the fundamentals is uncertain, partners use public signals not

only to incentivize effort but also to estimate the quality of the partnership. Better

monitoring still benefits the partnership by providing better signals of efforts, but it also

results in better learning about the fundamentals (higher gain parameter γ). Crucially,

faster learning means that good outcomes are quickly incorporated in increased expected

fundamentals, and the window for rewarding unexpectedly high outcomes, and so effort,

shrinks. This shorter horizon for the incentive provision is particularly harmful at the

bliss point of the partnership, when effort can be motivated solely by future rewards

(Proposition 2). Part (ii) of Proposition 3 establishes that, with little noise, this negative

effect is dominant and eliminates relational incentives.35

In the extreme, if fundamentals are monitored with no noise, the current change

in fundamentals is a sufficient statistic to evaluate current effort. Incentives must be

provided immediately, as in the repeated game i.i.d. setting. Since this is not possible at

the bliss point of maximal relational capital, the construction of any relational incentives

unravels (part (iii) of the proposition). This result is directly related to the impossibility

of nontrivial incentives in Sannikov and Skrzypacz (2007, 2010).

34Note that providing the same level of incentives with less noise requires less variability of relational
capital in equilibrium. Suppose σµ, r = 1, α = 0; generating relational incentives F of, say, one,
requires sensitivity I of relational capital to public signal equal one as well. This results in the volatility
of relational capital σY , increasing in noise. Formally, the only impact of σY on the HJB equation (10) is
through the last term, with the cost of incentives due to the second-order variation of relational capital
increasing in σY .

35Note that, as σY shrinks, only the left-hand side (required mean flow of incentives) and the last
term in the HJB equation 10 (contribution of the incentive flow) are scaled up. When the middle
term capturing the benefit of delayed incentives disappears, the effect is similar as when the horizon for
incentive provision shrinks. Formally, the solution of the HJB equation that starts around w∗ > 0 would
reach arbitrarily high levels, since i) F ′′(w) is bounded away from negative infinity, as long as F (w) is
bounded away from zero; and ii) F ′(w) is arbitrarily steep close to w∗ (Theorem 1).
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One solution to this impossibility, following Abreu, Milgrom, and Pearce (1991), is to

withhold the arrival of information; players observe the relevant path of signals only at

times l, 2l, 3l, etc., for a fixed time length l > 0. In the new game—with “compounded”

periods, actions, and signals—the horizon for incentive provision is still only the current

period. However, the bundling of information improves the information quality in any

given period and partners can be incentivized to work even when the relationship is at

its best.

Proposition 3 highlights an alternative solution, and the benefits of poorer monitor-

ing of the state. Our results show that with perfectly monitored fundamentals it is not

the “short periods”, but the instantaneous arrival of the relevant information and in-

stantaneous time horizon for incentives that hampers the provision of incentives in the

partnership. The impossibility in Sannikov and Skrzypacz (2007, 2010) is not due to

the peculiarities of continuous-time modelling, but extreme assumption of perfect state

monitoring.

4.3 Uncertainty about the Partnership

In our environment, there is an additional obstacle to partners’ monitoring of each other’s

effort: the quality of the partnership is stochastic and unobserved by the partners. The

uncertainty is captured by the degree of volatility of the fundamentals, σµ.36

Proposition 4 The supremum of relational capital, w∗, that the partnership can generate

in a local SSE decreases with the uncertainty regarding the partnership quality, σµ.

In contrast to improved monitoring, reducing uncertainty about the quality of the

joint venture facilitates the provision of incentives. This is because reduced uncertainty

results in the public news more closely tracking the effort exerted by the partners, instead

of reflecting the exogenous changes in quality.

One implication of the result is that the use of relational incentives to motivate

the partners is more adequate at mature, long-standing relationships, whose quality—

36More precisely, variance in beliefs is strictly increasing in σµ, end equals zero when σµ does; see
Equation 3.
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technology, product, environment, synergies, etc—is better known.37 As the partnership

is better understood, the partners can use the public news to more precisely reward the

provision of effort. In contrast, in young enterprises, the uncertainty about the quality of

the joint venture gets confounded with the uncertainty about the level of fundamentals.

Hence, if one of the partners free rides, part of the bad news will be attributed to a “worse

than expected” quality, inhibiting punishments.

Finally, depending on the level of uncertainty about the venture, a stream of bad out-

comes has differential effect on relational capital and expected fundamentals. In mature

partnerships with little uncertainty (σµ is low or absent), profit outcomes barely affect the

expected fundamentals (as γ is close to zero). On the other hand, relational capital is sen-

sitive to the public news. It follows that a profitable and mature partnership may unravel

when its goodwill is tested by a short string of sharp, adverse outcome, with hardly any

effect on its profitability (see Equations (2) and (3)). The Beatles (10 years together) and

Daft Punk (28 years) in music; Jamie Dimon and Sandy Weill from Citigroup (15 years)

in finance; and Daniel Humm and Will Guidara from Eleven Madison Park (13 years) in

fine-dining provide stylized evidence. Younger enterprises, with more uncertainty about

the partnership quality, tend to burn their perceived productivity before dissolution.

Corollary 2 In a near-optimal local SSE, at any point in time t, a partnership may

unravel in an arbitrarily short period of time after a sequence of unexpected bad news.

The accompanying change in the expected profitability is of order σµ times the amount of

bad news.

Figure 3 displays the differences in the dynamics of the fundamentals and of the

relational capital. It shows three different sample paths, highlighting that a partnership’s

relational capital is not determined by its profitability. Furthermore, even at dissolution,

partnerships have different levels of the fundamentals.

37For tractability, in this paper, we consider only stationary models, with uncertainty constant over
time. We can interpret it to be low for mature ventures, and high for the young ones.
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Fundamental and Relational Capital: Comparing different Paths

This figure displays three different sample paths of the relational capital of a partnership, as a

function of the fundamentals of the relationship. The horizontal line marks the level of relational

capital at which effort is maximized.

Figure 3: Relational Capital and Fundamentals of a Partnership

4.4 Relational Incentives versus Reputation

In this paper, we have motivated the partners through relational incentives. However,

going beyond our model, a key alternative incentive mechanism in weak-contractual envi-

ronments is to motivate agents by reputational effects, i.e., working to build a good name

for the firm (career concerns, Holmström (1999)).38,39 In this section, we argue that our

model can be readily extended to allow for career concerns. Importantly, the comparative

statics of the effects of the informational environment on career concerns is very different

from the effects on relational incentives, established above.

When building a reputation, a partner exerts effort so that good profit outcomes

are misattributed to a high quality of the venture, which in turn increases the venture’s

38Note that unlike in Holmström (1999) signal-jamming model, in our model efforts affect the state
rather than the signal.

39An earlier version of the paper also considered a reduced form model of a spot labor market, with
effort incentivized by piece-rate wages, given a monitoring/transaction cost quadratic in wages. Unlike
with relational incentives, the delayed effect of effort (low α) and poor monitoring (high σY ) have
unambiguously negative effects on the value of the venture, and high uncertainty about the partnership
(high σµ) has a negative effect, as with relational incentives.

29



market value, captured by the partners. We may accommodate career concerns in our

model by adjusting the cumulative profit flow of the partnership at time t, πt, to consist

of the weighted sum of the noisy signal (as before) and the public belief of the partnership

fundamentals, πt = (1− κ)dYt + κµt, with the parameter κ ∈ [0, 1] capturing the relative

weight. In our baseline model, κ = 0.40

Compared to the direct incentives in the main model, career concerns incentives are

scaled by γ
r+α+γ

. This is because an extra unit of effort increases the private expectation

of the fundamentals above the public expectation, as in the main model. The difference

in the expectations degrades over time at a rate α + γ, and raises the payoff relevant

parameter (public expectation) by a factor of γ, at any point in time. Finally, an increase

in the payoff relevant parameter degrades over time as in the main model.41

It follows that, for a fixed set of parameters, the analysis of the provision of incentives

in a partnership with career concerns proceeds analogously as in the main model, but

with Markov incentives adjusted to κγ
2(r+α+γ)

+ (1−κ)
2

. Unlike in the main model, however,

Markov incentives are now affected by the information structure parameters α, σY , σµ (in

line with Holmström (1999)).

Corollary 3 With career concerns, Markov incentives are i) increasing in persistence

α−1, ii) increasing in the precision of the monitoring technology σ−1Y , and iii) increasing

in the uncertainty about the partnership quality σµ.

While persistence has a similar effect on career concerns and relational incentives, the

effects of the monitoring technology and of uncertainty about the quality are in direct

contrast in the two settings. First, while more precise monitoring eliminates relational

incentives, it improves learning about the changes in the quality of the partnership,

40In Holmstrom’s model, the venture can be sold in every period in a competitive market, giving the
owner rights to collect the profit flow. The competitive price is the publicly expected level of the profit
flows, i.e., the fundamentals, µt. Thus, κ may be interpreted as the fraction of the partnership traded.

41Combining the three effects, the total marginal benefit of effort Fcc due to career concerns is

Fcc = (r + α)× γ

r + α+ γ
× κ

2(r + α)
=

κγ

2(r + α+ γ)
.
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precipitating the arrival of the career concerns rewards.42 Second, the mechanism through

which the uncertainty affects the two kinds of incentives is the same, yet with opposing

effects. High uncertainty crowds out the relational reward for good outcomes, which

are misattributed to an exogenous change in the quality. While this restricts relational

incentives, the same mechanism facilitates career-concern incentives for effort.

These contrasting comparative statics have implications on the cross-section of orga-

nizational structures. Partnerships benefit when the progress of the venture is hard to

monitor, i.e. based on long-term, qualitative contributions, but the uncertainty about

the venture is low. In contrast, reliance on reputation-based incentives is more fruitful

if progress is easier to quantify and measure, but the uncertainty regarding the venture

quality, and so the scope for building reputation, is high. This is consistent with the

observation that partnerships are very common in the professional sector, i.e. law firms,

accounting, and advertising (see Levin and Tadelis (2005) and Von Nordenflycht (2010)).

The sector is dominated by old, established firms, with little outstanding uncertainty

about them, and at the same time the product of a firm is opaque.43

5 Nonlinear Model

The model considered so far is linear—the evolution of fundamentals is linear in the

level of fundamentals and in the exerted efforts, and the expected payoffs are linear

in the level of fundamentals. While linearity helps with a tractable characterization of

relational incentives in partnerships, the framework with persistence and imperfect state

monitoring as well as the solution method extend to a wider class of models.

Below we consider a model with dynamics and payoffs that are nonlinear in the level of

fundamentals; given the familiar difficulties with learning in nonlinear environments, we

42Career concerns rewards also exist at every state of the venture, with no “unraveling from the bliss
point”.

43In particular, in these knowledge-intensive environments, even after the output is produced and
delivered, its quality is hard to evaluate (see Empson (2001), Greenwood and Empson (2003), Broschak
(2004), and Von Nordenflycht (2010)). For instance, for an advertising agency, even after the campaign is
published its quality and effects are hard to measure: Was the advertising agency’s campaign responsible
for the sales increase? A similar argument holds for other professional partnerships, i.e. was the lawyer’s
argument responsible for the acquittal?
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let fundamentals be deterministic in efforts.44 In Theorem 4, we provide the differential

equation that characterizes the boundary of the local SSE incentives, analogously to The-

orem 1. Then we present two canonical special cases: (i) a model of capital accumulation

and (ii) oligopoly with persistence.

Suppose that the fundamentals µt, the publicly observable signal Yt, and the expected

profits πi of player i follow:

dµt = g(µt, a
1
t + a2t )dt, (19)

dYt = µtdt+ σY dB
Y
t ,

dπit = f(µt, a
i
t)dt,

where f and g are continuously differentiable functions that are concave in the second

arguments, and the discount rate is large enough to guarantee the transversality condition,

r − gµ > 0. For a pair of symmetric strategies, define the continuation payoffs,

Wτ = E{at,at}τ

[∫ ∞
τ

e−r(t−τ)f(µt, at), dt

]
,

and the marginal benefit of fundamentals,

Gτ :=
∂

∂ε
Wτ ,

for revenue processes dY ε
t = µεtdt+ σY dBt, where µετ = µτ + ε and µεt evolves as in (19),

with ε > 0. Finally, a local Strongly Symmetric Equilibrium is a profile of symmetric

strategies such that, following any history, actions are locally optimal,45

aτ := a(Gτ , µτ ) = arg max
a
f(µτ , a) + g(µτ , aτ + a)×Gτ . (20)

44Nonlinear dynamics would preclude using the relatively simple Kalman-Bucy filter to characterize
learning. With learning and payoffs non-linear in fundamentals, extra effort would increase the funda-
mentals directly but also affect the wedge between the private and public beliefs about them. The first
effect wears off only due to the mean reversion of fundamentals, while the second effect wears off also due
to learning. Given different rates of discounting, proper accounting for incentives would have to include
direct incentives as an additional state variable, besides the level of the fundamentals (see Section 6).

Note that in our benchmark linear model, the direct benefit of effort is constant, and so the dynamics
of incentives are driven only by the wedge in beliefs. In the model of career concerns, the effort affects
only the transient signal and not the hidden quality (both in the linear model, Holmström (1999), and
in the nonlinear version, Cisternas (2017)), and so there is no direct effect of effort.

45In the linear model from Section 2.1, g(µt, a
1
t +a2t ) = (r+α)(a1t +a2t )−αµt, f(µt, a

i
t) = µt/2− c(ait),

wt = Wt − µt

2(r+α) and Ft = (r + α)Gt − 1/2.
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Let G(W,µ) be the supremum across all local SSE of the marginal benefit of funda-

mentals, for a given level of continuation payoffs and fundamentals.

Theorem 4 The upper boundary G of marginal benefit of fundamentals achievable in a

local SSE is concave in W and satisfies the differential equation

(r − gµ(µ, 2a))G(W,µ) = (21)

max
I

{
I + fµ(µ, a) +GW (W,µ) (rW − f(µ, a)) +Gµ(W,µ)g(µ, 2a) +

GWW (W,µ)

2
σ2Y I

2

}
,

at any point where G is twice continuously differentiable, with a = a(G, µ) as in (20).

Remark 1 The result is immediately extended to settings in which the signal has drift

linear in fundamentals, dYt = (At + Btµt)dt + σY dB
Y
t , and fundamentals are split into

individual components, µt = µ1
t + µ2

t , with the drift of an individual component and flow

expected profits equal dµit = g(µit, µ
−i
t , a

i
t, a
−i
t ) and dπit = f(µit, µ

−i
t , a

i
t).46

The theorem provides an HJB characterization of the marginal benefit of fundamentals,

which drives the incentives as in (20), in a nonlinear environment. As in the benchmark

model, the effort in the pointwise maximization depends on the level of the maximal

incentives G. The main difference, and a complication relative to Theorem 1 is that

the direct marginal benefit of increased fundamentals, or Markov incentives, as well as

their rate of mean reversion now depend on the level of fundamentals, which must be

included as an additional state variable. This is familiar from the literature on Markov

Perfect Equilibria. The additional, relational incentives are provided by the positive

sensitivity I of continuation payoffs with respect to the public signals, much like in the

linear environment. In particular, the marginal benefit exhibits the same persistence as in

46The differential equation (21) generalizes to

(r − g1)×G = max I

{
I + f1 +GW × (rW − f) +Gµ × g +

GWW

2
σ2
Y I

2

}
,

where functions g1, f1, f, g are evaluated at (µ/2, µ/2, a(G,µ), a(G,µ)), with

a(G,µ) = arg max
a

f(µ/2, µ/2, a) + g(µ/2, µ/2, a, a(G,µ))×G.
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the linear setting: it may exceed the Markov benefit even at a point when the sensitivity

I is zero, due to the deferred relational incentives, when GW (W,µ) is non-zero. This is a

consequence of persistence and imperfect state monitoring.

The proof of the Theorem, in Appendix A.6, is based on three Lemmas, which general-

ize Lemmas 1-3 to nonlinear setting. Unlike Theorem 1, the result does not establish the

regularity of the solution or the boundary conditions, which we believe merit a separate

paper.

Capital Accumulation An important element for the provision of effort in teams,

which we ignore in the main model, is that effort today may change the productivity

of effort in the future. For instance, when developing a new product, early efforts to

design a better product have significant effect on the productivity of later marketing

efforts. Formally, the effect of effort on fundamentals may be increasing in the level of

fundamentals and, hence, past efforts. Moreover, fundamentals may degrade slower (or

not at all) after they ratchet above certain safe level.

Specifically, the equations in (1) generalize to:

dµt = g(µt, a
1
t + a2t )dt,

dYt = µtdt+ σY dB
Y
t ,

where g is a differentiable function that is concave in the second argument.

The differential equation (21) that characterizes the supremum of marginal benefit of

fundamentals achievable in local SSE in this case is

(r − g1(µ, 2a(G,µ)))G(W,µ) =

maxI

{
1

2
+ I +GW (rW − (µ/2− c(a(G,µ)))) +Gµg(µ, 2a(G,µ)) +

GWW

2
σ2Y I

2

}
,

where the locally optimal effort a = a(G, µ) satisfies c′(a(G, µ)) = g2(µ, 2a(G, µ))×G.

Oligopoly Alternatively, we can generalize the model’s payoff structure rather than

changing the evolution of the fundamentals. This allows the model to speak to different

economic settings, which we highlight with a simple model of an oligopoly. At any time,
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each firm i chooses to produce a quantity ait, which adds up to the total stock of own

goods produced, µit. At the same time, a fixed fraction α of total production is sold, with

the mean price (inverse demand function) linearly decreasing in the quantity sold. Firms

publicly observe only the price.47 Formally, with πit representing the cumulative profits

of firm i until time t, we have48

dµit = (r + α)aitdt− αµitdt,

dYt = (p− α(µ1t + µ2t ))dt+ σY dB
Y
t ,

dπit = αµitdYt − c(ait)dt.

The main difference between this model and the continuous time limit of the model

analyzed by Sannikov and Skrzypacz (2007) is that here the expected price at time

t, dYt, depends on the current stock of goods, which have been produced in the past

and gradually sold, rather than on the current instantaneous production (all of which is

sold). The main difference with the main model in Section 2.1 of this paper is that, in a

symmetric equilibrium with a1t = a2t , µ
1
t = µ2

t =: µt/2, at any t, the flow revenue of a firm

is 1
2
αµtdYt, rather than 1

2
dYt.

The differential equation characterizing the upper boundary of marginal benefits of

fundamentals in local SSE is

(r + α)G(W,µ) = max
I

{
− αI + α(p− 3

2
αµ)+

GW

(
rW −

(
1

2
αµ(p− αµ)− c(a)

))
+Gµ(2(r + α)a− αµ) +

GWW

2
σ2
Y I

2

}
,

where a = a(G) is the locally optimal action that satisfies c′(a(G)) = (r + α)×G.

6 Concluding Remarks and Discussion

The paper characterizes optimal relational incentives in a novel model of partnership,

with persistence and imperfect state monitoring. The main economic result is the benefit

47Each firm also observes the fraction α of own goods sold, but this does not provide any information
about the competitor.

48For simplicity, we keep the same scaling constants as in the body of the paper.
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of poorer monitoring, specific to relational incentives, which allows rewards and pun-

ishments to be delivered in a longer window of time. This insight is consistent with

the predominance of well-established partnerships in industries with opaque product. It

also opens up the analysis of relational incentives in a continuous-time setting. The main

methodological contribution is a method to characterize optimal relational incentives that

extends stochastic control, in a setting with persistence and imperfect state monitoring.

There are many ways in which one may modify our benchmark model. We conclude

the paper by informally discussing the robustness of the results with respect to some of

them.

1) Frequency of Play. One question is whether the results of the paper are specific to

the continuous-time Brownian setting considered here, or if they hold in an approximate

model with short, discrete time periods and Normal noise.

We have no reason to doubt that our results are approximated in the discrete-time

setting (albeit at a cost of working with difference equations). First, the boundary of

the set of incentives and relational values should be self-generating, and approximately

satisfy the differential HJB characterization, with short, discrete time periods. This

mirrors the classic results on Folk Theorem (see, e.g., Fudenberg, Levine, and Maskin

(1994)), or the results for a Brownian Principal-Agent model (Sadzik and Stacchetti

(2015)).49, 50 Second, the problems with providing incentives close to the boundary point

of the supremum relational capital persist with a high frequency of play, for information

structures with Normal noise that approximate the Brownian model in this paper. This

continuity result is the subject of Sannikov and Skrzypacz (2007, 2010), in the special

case of no persistence (or in the case of perfectly monitored fundamentals). While we

are convinced the continuity holds also in our more general setting, the formal proof is

beyond the scope of this paper.

2) Mixed and Asymmetric Strategies; Other Solution Concepts. Throughout the paper

49In the Folk Theorem setting the boundary of the value set is approximated by a linear function; with
Brownian model, the approximation requires a quadratic function.

50The assumption of Normality in the approximation is likely important, though; see Sadzik and
Stacchetti (2015).
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we restricted attention to pure strategy strongly symmetric equilibria. Formally, our

representation results suggest that mixing may not happen in equilibrium, as partners

face locally linear reward schemes in continuous-time, with a fixed marginal benefit of

effort. With no mixing, players have no private information, and hence every strategy,

even a deviating strategy, is public.51

In a discrete-time approximation, mixed strategies may help identify other players’

strategies (see Fudenberg, Levine, and Maskin (1994)). Moreover, extending solution

concept to include private communication would allow conditioning of the play on past

mixing and open door to random “testing”, with subsequent punishment or reward of

the opponent (Kandori and Obara (2006)). For example, a partner may at random times

decrease her own effort to the minimum, and let the opponent “pay” for low outputs.

The same can be achieved with private, mediated messages (Rahman (2014)). This

individual monitoring, in the spirit of Alchian and Demsetz (1972) and standard moral

hazard, would provide additional incentives in a partnership.

Short of excluding one partner, as discussed above, asymmetric strategies neither

improve the monitoring nor increase efficiency (due to convex costs). It can therefore

best be thought of as an instrument for additional “burning value”. While we believe

asymmetric strategies may lead to better equilibria, explicitly allowing some degree of

enhancing or burning of the value, discussed next, seems to us a cleaner and more direct

modeling choice to capture the same channel.

3) Observable Actions. We may allow partners to exert additional observable effort.

It may be productive and drive profits up, or it may be unproductive, with the only effect

of “burning value”. We conjecture that the only difference in the resulting differential

equation 10 is the extra term in the drift of the relational capital. When observable effort

is parametrized by the effect o it has on the value of the partnership, in the case when

F ′ < 0, partners exert the efficient level of observable effort o > 0, which drives rela-

tional capital down. When relational capital is low and F ′ > 0, partners exert the most

unproductive effort o < 0. This “conspicuous toiling” is best viewed as an investment in

51Note that a public strategy may implicitly condition on own past (pure) deviating actions, through
conditioning on the public information at that point in history.
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relational capital, which moves up quickly in response.52

4) Additional State Variables and Asymmetric Agents. Section 5 shows how the solu-

tion method may be extended to nonlinear settings, at a cost of adding fundamentals as

an additional state variable. Further generalization of the result to more state variables

seems straightforward. An earlier version of the paper argued for an HJB characterization

of a boundary in an abstract optimization problem, with the value and a vector of state

variables following

dVt = [f1(θt, It)× Vt + f2(θt, It)]dt+ IVt dB
V
t ,

dθt = f3(θt, Vt, It)dt+ σ(θt, Vt, It)dBt,

for some control processes IVt ∈ R, It ∈ Rm that are progressively measurable with

respect to the Brownian motions, with all functions Lipschitz continuous and f1 positive

and bounded away from zero. Importantly, the only distinction between the value and

the state variables in the above system is that the value has drift linear in itself and has

unrestricted volatility. Crucially, just as in the main model considered in the paper, value

may affect the law of motion of the state variables.

The generalization allows for additional publicly observable variables which affect the

flow payoffs or the dynamics of the fundamentals. Alternatively, it accommodates public

endogenous variables, such as continuation value and incentives of some of the agents,

opening up the analysis to games with asymmetric agents, persistence, and imperfectly

monitored state.

52Similar investment in the value of a partnership has been documented in the equilibrium setting by
Fujiwara-Greve and Okuno-Fujiwara (2009) and verified in the lab setting by Lee (2018).
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A Online Appendix: Proofs

A.1 Proofs of Lemmas 1, 2, and 3.

Proof of Lemma 1. The proof can be split in two parts. First, we establish that for an

arbitrary pair of symmetric strategies {at, at}, relational capital {wt} follows a process

(9), for some L2 process {It} and a martingale {Mw
t } orthogonal to {Yt}. The proof

follows similar steps as Proposition 1 in Sannikov (2007). We derive the representation

for the relational capital process in (9) in the second step.

The process
{
Yt −

∫ t
0
µsds

}
, scaled by σY , is a Brownian Motion, and the process

w̃t =
∫ t
0
e−rs (as − c(as)) ds+e−rtwt is a martingale. Since efforts, and so w̃t are bounded,

it follows from Proposition 3.4.15 in Karatzas (1991) (of which the Martingale Repre-

sentation Theorem is a special case, when the filtration Ft is generated only by the

process of profits) that w̃t equals
∫ t
0
e−rsIs (dYs − µsds) + Mw

t , for an appropriate {It}
and a martingale {Mw

t }. Differentiating and equating both expressions for w̃t yields the

representation.

Conversely, for a bounded process {vt} that satisfies (9), define the process ṽt =∫ t
0
e−rs (as − c(as)) ds+e−rtvt, together with w̃t as above. Both {ṽt} and {w̃t} are bounded

martingales and so, as their values agree at infinity, they agree after every history. It

follows that the processes {vt} and {wt} are the same. This establishes the first step.

Let us now evaluate the marginal benefit of effort, and the marginal relational benefit

of effort Fτ in particular. Consider the Brownian Motion σ−1Y

{
Yt −

∫ t
0
µsds

}
. It follows

from Girsanov’s Theorem that the change in the underlying density measure of the output

paths induced by the change in expected fundamentals from µτ to µdevτ = µτ + ε(r+α) is

Γεt = e
− 1

2

∫ t
τ

(µdevs −µs)
2

σ2
Y

ds+
∫ t
τ
µdevs −µs

σY

dYs−µsds
σY , (22)

for t > τ , where {µs}s≥τ and {µdevs }s≥τ are the associated paths of estimates, defined in

(2), with µdevs − µs = εe−(α+γ)(s−τ), s > τ . The relational capital at time τ thus changes

to

E{at,at}τ

[∫ ∞
τ

e−r(t−τ)Γεt (at − c(at)) dt
]
. (23)

Since

∂

∂ε
Γεt

∣∣∣∣
ε=0

= (r + α)

∫ t

τ

e−(α+γ)(s−τ)
dYs − µsds

σ2
Y

,

1



it follows that

Fτ =
∂

∂ε
E{at,at}τ

[∫ ∞
τ

e−r(t−τ)Γεt (at − c(at)) dt
]

= (r + α)E{at,at}τ

[∫ ∞
τ

e−r(t−τ) (at − c(at))
(∫ t

τ

e−(α+γ)(s−τ)
dYs − µsds

σ2
Y

)
dt

]
= (r + α)E{at,at}τ

[∫ ∞
τ

(∫ ∞
t

e−r(s−t) (as − c(as)) ds
)
e−(r+α+γ)(t−τ)

dYt − µtdt
σ2
Y

]
,

where the last equality follows from the change of integration.

Intuitively, in the last integral above, the inside integral corresponds to the forward

looking relational capital, which is then multiplied by a Brownian innovation, scaled by

the discounted impact of shifted (expected) fundamentals. The correlation between the

relational capital and the Brownian innovation equals It, from the representation of the

relational capital. This yields Fτ as the expected discounted integral of It.

Formally, for τ ′ ≥ τ,

E{at,at}τ ′ [Fτ ] = (r + α)E{at,at}τ ′

[∫ ∞
τ

(∫ ∞
t

e−r(s−t) (as − c(as)) ds
)
e−(r+α+γ)(t−τ)

dYt − µtdt
σ2
Y

]
= (r + α)

[∫ τ ′

τ

(∫ τ ′

t

e−r(s−t) (as − c(as)) ds

)
e−(r+α+γ)(t−τ)

dYt − µtdt
σ2
Y

]

+ (r + α)wτ ′ ×

[∫ τ ′

τ

e−r(τ
′−t)e−(r+α+γ)(t−τ)

dYt − µtdt
σ2
Y

]
+ e−(r+α+γ)(τ

′−τ)Fτ ′

is a martingale, as a function of τ ′. Using the representation of the relational capital

established above, the change of this martingale equals

(r + α)

[
e−(r+α+γ)(τ

′−τ)Iτ ′ + ((aτ ′ − c(aτ ′))− rwτ ′)
∫ τ ′

τ

e−r(τ
′−t)e−(r+α+γ)(t−τ)

dYt − µtdt
σ2
Y

]
+
d

dt
e−(r+α+γ)(τ

′−τ)Fτ ′ ,

where the first term is the covariance of the Brownian increments of (r + α)wτ ′ and of

the bracketed stochastic intergral in the last line. Integrating over [τ,∞) and taking

expectation at time τ yields

Fτ = (r + a)E{at,at}τ

[∫ ∞
τ

e−(r+α+γ)(t−τ)It

]
.

Using Proposition 3.4.15 from Karatzas (1991) one more time, Fτ satisfies the above

equation precisely when it can be represented as in (9).

Finally, since effort increases fundamentals by (r+α)dt, and given the decomposition

2



of the continuation value as in (6), the effort process is a local SSE exactly when at

satisfies at = a(Ft) (see e.g. the Verification Theorem in Yong and Zhou (1999) Ch.3.2).

This establishes the proof.

Proof of Lemma 2. Let I : [w,w] → R, with I(w) ≥ I∗(w) = − r+α
σ2
Y E
′′(w)

, be the

strictly positive continuous function that solves (14) with equality, i.e.,

(r+α+γ)E(w) = (r+α)I(w) +E′(w) (rw − [a(E(w))− c(a(E(w)))]) +
E′′(w)

2
σ2Y I

2(w). (24)

Note that the first boundary condition in (16) can hold either when I
(
w∂
)

= 0, or, as

in our case, I(w∂) = −2 r+α
σ2
Y F
′′(w)

> 0. The construction of a local SSE that achieves the

boundary in the case I(w∂) > 0, when relational capital “escapes” the interval [w,w],

requires an additional step, as we detail below.

First, we extend the functions E and I beyond the boundary points w∂, at which

condition (16) is satisfied with I
(
w∂
)
> 0 as follows. Consider a boundary point w∂ = w

and, say, rw∂ −
(
a(E(w∂))− c(a(E(w∂)))

)
< 0. We use the Implicit Function Theorem

to extend function E to a point w > w, so that conditions (16) and E ′′ (w) < 0 hold on[
w,w

]
. We also extend I continuously to the interval

[
w,w

]
with I(w) = −2 r+α

σ2
Y E
′′(w)

> 0,

so that E and I satisfy the equation (24) on
[
w,w

]
. In words, on the interval

[
w,w

]
the

relational incentives can be provided in two ways: they can either consist entirely of the

discounted future relational incentives, with zero flow, or by providing inefficiently high

flow of relational incentives I. The extension to the interval
[
w,w

]
in the case of w∂ = w

is analogous.

Fix w0 ∈ [w,w]. We first construct a process {wt} of continuation values that satisfies

the stochastic equation (9). Let τ∞ be the stopping time when {wt} reaches a boundary

point that is a local SSE. Moreover, define a sequence of stopping times (τn)n∈N+
such

that τ0 = 0; for n odd, τn ≥ τn−1 is the stopping time when {wt} reaches either of the

new, “outside” boundary points
{
w,w

}
; and for n > 0 even, τn ≥ τn−1 is the stopping

time when {wt} reaches either of the original “inside” boundary points {w,w}. For

times t ∈ [τn, τn+1) with n even and t < τ∞ we let {wt} be the weak solution to (9),

with It = I (wt) and {Mw
t } = 0, starting at wτn . Existence of a weak solution follows

from the continuity of it’s drift (which is a consequence of continuity of E and action

defined via (8)) and volatility I (see e.g. Karatzas (1991), Theorem 5.4.22). For times

t ∈ [τn, τn+1) with n odd and t < τ∞ we let {wt} be the weak solution to (9), with It = 0

3



and {Mw
t } = 0, starting at wτn . In words, the process {wt} has positive volatility until it

reaches an “outside” boundary point in
{
w,w

}
, after which it drifts “inside” till it reaches

the “inside” boundary point in {w,w}, when it resumes with the positive volatility, and

so on.

It follows from Ito’s formula that before τ∞ the process Ft = E(wt), satisfies the equa-

tion in (9), with Jt = E ′(wt)×I(wt). Since both wt and Ft are bounded, the transversality

conditions are satisfied. Finally, we may extend the processes {wt} , {It} , {Ft} and {Jt},
together with martingales {Mw

t } beyond τ∞ by letting them follow a local SSE that

achieves (wτ∞ , F (wτ∞)). Then the processes satisfy conditions of Lemma 1.

Proof of Lemma 3. Fix (w0, F0) with w0 ∈ (w,w) and Eλ(w0) < F0 < Eλ(w0) + λ,

together with a local SSE that achieves it, and let {wt} and {Ft} be the processes of

relational capital and relational incentives it gives rise to. Define D(wt, Ft) as the distance

of Ft from the solution Eλ of the differential equation (17),

D(wt, Ft) = Ft − Eλ(wt).

Using Ito’s lemma together with Lemma 1, at any time t when D (wt, Ft) ∈ [0, δ], the

drift of the process D(wt, Ft) equals, for appropriate process {It},

E [dD(wt, Ft)]

dt
= (r + α+ γ)Ft − (r + α)It − Eλ′(wt)× (rwt − (a(Ft)− c(a(Ft)))) (25)

−
Eλ′′(w)

[
σ2Y I

2
t + d 〈Mw

t 〉
]

2

≥ (r + α+ γ)Ft − (r + α)It − Eλ′(wt)×
(
rwt −

(
a(Eλ(wt))− c(a(Eλ(wt)))

))
−
Eλ′′(w)

[
σ2Y I

2
t + d 〈Mw

t 〉
]

2
− λ

2

≥ (r + α+ γ)
(
Ft − Eλ(wt)

)
+ λ− λ

2
> (r + α+ γ)×D(wt, Ft),

The first inequality holds because
∣∣Eλ′(wt)

∣∣ ≤ 1/λ, functions a and c are Lipschitz con-

tinuous and D (wt, Ft) ∈ [0, δ], where δ is assumed to be sufficiently small. The second

inequality follows because Eλ satisfies

(r + α+ γ)Eλ(w) ≥max
I

{
(r + α)I + Eλ′(w)

(
rw −

(
a(Eλ(w))− c(a(Eλ(w)))

))
+
Eλ′′(w)σ2Y

2
I2
}

+ λ,

(26)

Eλ is concave, and d 〈Mw
t 〉 is positive. Let τ be the stopping time of the process D(wt, Ft)

4



hitting zero. Due to D(w0, F0) > 0 and inequality (25), it follows that there is a finite

time T such that E [D(wT , FT )|τ ≥ T ] > δ. On the other hand, since

E
[
D(wmin{T,τ}, Fmin{T,τ})

]
= P (τ ≥ T )× E [D(wT , FT )|τ ≥ T ]

+ P (τ < T )× E [D(wτ , Fτ )|τ < T ]

= P (τ ≥ T )× E [D(wT , FT )|τ ≥ T ] ,

and the expectation is positive, it follows that P (τ ≥ T ) > 0. This establishes that

D(wT , FT ) exceeds δ with positive probability, contradiction.

A.2 Proof of Theorem 1

We begin the proof of the Theorem with the following two technical lemmas. We define

the efficient level of relational capital as wEF = 1
r

(aEF − c(aEF )), for the efficient effort

level aEF , with c′(aEF ) = 1. Let also F be the lower arm of the parabola, which is the

locus of the feasible relational capital-incentives pairs (w,F ) that can be achieved by

symmetric play in a stage game, satisfying rw = a(F )− c(a(F )); see Figure 1.

Lemma 4 The set E is convex and w∗ ≤ wEF . Moreover, the upper boundary F satisfies

F (w) ≥ F (w) > 0, w ∈ (0, w∗).

Proof. Convexity is immediate from the possibility of public randomization, and the

inequality w ≤ wEF follows from the definitions. Finally, suppose by the way of contra-

diction that there exists w, 0 ≤ w < w∗, such that F (w) < F (w). Note that at w the

slope of F is smaller than the slope of F : otherwise, the repeated static Nash point (0, 0),

belonging to the graph of the convex function F , and the convex set E would not overlap.

This implies that F is bounded away below F to the right of w, and so in any local SSE

the relational capital has drift bounded away above zero, as long as wt ≥ w (see (9)).

The possibility of escape of relational capital beyond w∗ establishes the contradiction.

Lemma 5 Let E,F : [w,w)→ R be two concave functions such that

i) F ≤ E,

ii) F (w) = E(w) and F ′+(w) = E ′+(w),

iii) E ′′+(w) exists

5



Then either F ′′+(w) exists and equals E ′′+(w) or there is G with G(w) = F (w), G′+(w) =

F ′+(w) and G′′+(w) < E ′′+(w) such that F ≤ G in a right neighborhood of w.

Proof. Suppose that F ′′+(w) does not exist or is not equal to E ′′+(w). From i), this means

that there is a ε > 0 and a decreasing sequence {wn} → w such that

F (wn) ≤ E(w) + E ′+(w)× (wn − w) +
(
E ′′+(w)− ε

)
× (wn − w)2 .

However, concavity of F implies that the above inequality holds not only for the

sequence {wn} but in a right neighborhood of w. This implies the result, with G(w) =

E(w)− ε(w − w)2 in a neighborhood of w.

The proof of Theorem 1 rests on the following four lemmas. Relying on Lemmas 2

and 3, as well as the above two lemmas, they establish that: (i) the boundary points

(w,F (w)), for w > 0, may not be generated by solely deferred incentives from the future

and require strictly positive volatility of relational capital, or flow of incentives; (ii) the

boundary F is differentiable; (iii) given any boundary point (w,F (w)) and a tangent

vector F ′, the solution of HJB equation (10) with those boundary conditions must locally

lie weakly above the boundary F as well as (iv) weakly below the boundary F .

The propositions thus establish that in the range where the boundary F (w) is strictly

positive, it must satisfy the HJB equation (10). The proof is then concluded by estab-

lishing the boundary conditions (11).

Lemma 6 If (1, F ′) is a tangent vector at (w0, F (w0)), with w0 > 0, then

(r + α + γ)F (w0) > F ′ × (rw0 − [a(F (w0))− c(a(F (w0)))]) . (27)

Proof. Pick w0 > 0; it follows from Lemma (4) that F (w0) > 0. If the drift term is

zero, rw0 − (a(F (w0))− c(a(F (w0)))) = 0, then (27) holds. Suppose then that the drift

is strictly negative, rw0− (a(F (w0))− c(a(F (w0)))) < 0 (when the inequality is reversed

the proof is analogous), and such that inequality (27) fails. Assume also that (w0, F (w0))

is achieved by a local SSE, as opposed to being a limit of local SSE pairs – an assumption

that we relax at the end of the proof.

Let F
′ ≥ F ′ be such that (27) holds with equality, with F

′
in place of F ′. Consider

the function E defined over [w0, w
′], where w′ is in the right neighborhood of w0, such

that E satisfies (27) with equality, with initial condition (E(w0), E
′(w0)) = (F (w0), F

′
),

6



and such that w − (a(E(w))− c(a(E(w)))) < 0 for all w ∈ [w0, w
′]. E is the solution of

the implicit function second order ordinary differential equation.

Since (w0, E (w0)) is achieved by a local SSE and the boundary condition (11) holds

at w′, the function E satisfies conditions of Proposition 2, together with I ≡ 0. Conse-

quently, there are local SSE that achieve every pair in its graph, and so the function lies

below the boundary, E(w) ≤ F (w), w ∈ [w0, w
′]. (Note that it follows that the inequality

(r+ α+ γ)F (w0) < F ′× (rw0 − [a(F (w0))− c(a(F (w0)))]) is impossible, or else F
′
> F ′

and E lies above F .)

Consider now a strictly concave quadratic function G∗ defined in the right neighbor-

hood of w0 with (G∗(w0), G
∗′(w0)) = (F (w0), F

′(w0) and G∗(w) < E(w) for w > w0. The

function satisfies

(r + α+ γ)G∗ (w) < G∗′(w) (rw − [a(G∗(w))− c(a(G∗(w)))])− (r + α)2

2σ2YG
∗′′ , (28)

in a right neighborhood of w0. But then, by increasing slightly G∗′(w0), we may construct

a quadratic function G over an interval [w0, w] that also satisfies (28), together with

G(w0) = F (w0), G
′(w0) > F ′(w0), and G(w) < F (w). There exists then a function

I : [w0, w]→ R, with I(w) > − (r+α)2

σ2
Y G
′′ , such that

(r + α+ γ)G (w) = I(w) +G′(w) (rw − [a(G(w))− c(a(G(w)))]) +
G′′σ2Y

2
I2. w ∈ [w0, w]

Applying Lemma 1, each point (w,G(w)), for w ∈ [w0, w], can be achieved by a local

SSE. Since G′(w0) > F ′(w0), this yields the desired contradiction.

Finally, when (w0, F (w0)) is not achieved by a local SSE, the result follows for the

functions E,G∗, and G defined analogously as before, but with E(w0) = G∗(w0) =

G(w0) = F (w0)− ε, for sufficiently small ε > 0.

Consider now the HJB equation (10), written as F ′′(w) = F(w,F, F ′). Proposition 6

implies that the right hand side of this equation is well defined and is Lipschitz continuous

in the neighborhood of the points (w0, F (w0), F
′), for any w0 in (0, w∗) and a tangent

vector (1, F ′), with F ′′ < 0. The following corollary is used repeatedly in the proof of the

theorem:

Corollary 4 The solution of the HJB equation (10) exists and depends continuously on

the initial parameters in the neighborhood of the boundary condition (w0, F (w0), F
′), for

any w0 in (0, w∗) and a tangent vector (1, F ′).

7



Lemma 7 The upper boundary F of the set of relational capital and relational incentives

achievable in a local SSE is differentiable in (0, w∗).

Proof. Suppose to the contrary that (w0, F (w0)) is a kink. If follows from Proposition

6 that for any tangent vector (1, F ′) at (w0, F (w0))

(r + α + γ)F (w0) > F ′ × (rw0 − [a(F (w0))− c(a(F (w0)))]) .

Continuous dependence on the initial parameters implies that there exists λ > 0 such

that Eλ∗ solving (17) with the same initial conditions is strictly above the curve F in

a neighborhood of w0 (excluding point w0). Invoking the continuous dependence once

again, this time shifting the initial condition (w0, F (w0), F
′) down to (w0, F (w0)− ε, F ′),

for 0 < ε << λ, we construct a function Eλ that satisfies the conditions of Lemma 3,

yielding a contradiction.

Lemma 8 For any w0 in (0, w∗), the solution E to the differential equation (10) with

initial condition (w0, F (w0), F
′(w0)) is weakly above the curve F in a neighborhood of w0.

Proof. Suppose to the contrary that E < F in, say, the right neighborhood of w0

(the case of the left neighborhood is analogous). From continuous dependence on the

initial parameters, there are ε, δ > 0 such that that the solution Ẽ of (10) with initial

conditions (w0, F (w0)− δ, F ′(w0) + ε) crosses above and then comes back to F , meaning

Ẽ(w1) > F (w1) and Ẽ(w2) < F (w2) for some w2 > w1 > w0. But then the function Ẽ

defined on [w0, w2] satisfies conditions of Lemma 2, and so its graph is achievable by local

SSE. This yields a contradiction.

Lemma 9 For any w0 in (0, w∗), the solution E to the differential equation (10) with

initial condition (w0, F (w0), F
′(w0)) is weakly below the curve F in a neighborhood of w0.

Proof. Let E satisfy (10) with initial conditions (w0, F (w0), F
′(w0)) and suppose that

either F ′′+(w0) does not exist, or F ′′+(w0) 6= E ′′+(w0) (the case of left second derivative is

analogous). Propositions 7 and 8 establish that the conditions of Lemma 5 are satisfied at

w0, and so in the right neighborhood of w0 F is bounded above by E(w)−ε(w−w0)
2, for

appropriate ε > 0. Continuous dependence on initial parameters implies that there exists

ε > 0 such that Eλ∗ solving (17) with the same initial conditions (w0, F (w0), F
′(w0)) as

E has second derivative at w0 strictly larger than E ′′(w0) − ε and is strictly above the

8



curve F in a right neighborhood of w0 (excluding point w0). Invoking the continuous

dependence once again, this time turning the initial condition (w0, F (w0), F
′(w0)) right

to (w0, F (w0), F
′(w0)− δ), for 0 < δ << λ, we construct a function Eλ that satisfies the

conditions of Lemma 3, yielding a contradiction.

The proof so far established that the boundary F satisfies the HJB equation (10)

on (0, w∗). To conclude the proof of the theorem, it remains to establish the boundary

conditions (11).

1. F (0) = 0. Strictly positive relational incentives at zero in a local SSE would imply

that the expected discounted efforts by each agent are strictly positive; consequently,

a deviation to zero effort always would yield a nonzero relational capital to a partner,

contradiction.

2. limw↑w∗ F (w) = F (w∗). i) Lemma 4 shows that limw↑w∗ FD(w) < F (w∗) is im-

possible. ii) If limw↑w∗ F (w) ∈
(
F (w0), F (w0)

)
, then, using Proposition 1, it would be

possible to extend the solution to the right, with I(w) = 0 for w > w∗, contradic-

tion. iii) If limw↑w∗ F (w) = F (w0) then, whether F approaches F from above or below,

the differential equation (10) would be violated in the left neighborhood of w∗. iv) If

limw↑w∗ F (w) > F (w0), then relational capital in any local SSE achieving points close to

(w∗, limw↑w∗ F (w)) has strictly positive drift, bounded away from zero. This would lead

to the escape of w to the right of w∗, with positive probability.

3. limw↑w∗ F
′′(w) = −∞. When the condition is violated, then I∗(w) is continuous

and strictly positive close to w∗. The proof of the theorem so far establishes that F is

C2 and satisfies the differential equation (10). Given this regularity, standard verification

theorem techniques establish that the equilibria achieving (w,F (w)), w < w∗, must use

the optimal flow of relational incentives I∗(w) a.e. (see Yong and Zhou (1999)); when

(w,F (w)) is unattainable, the same is true for (w,E) in the limit, with E approaching

F (w). This, however, leads to the relational capital escaping to the right of w∗, with

positive probability.

A.3 Proof of Theorem 2

In the rest of the proof, let C and C be the upper and the lower bounds on the second

derivative of the cost function. In the following proofs we will need the following result.

9



Lemma 10 For any ε > 0 and the function Fε from Theorem 2

Fε ≤
(r + α)2

256σ2
Y (r + α + γ) r2C2 + 1. (29)

Proof. Let w0 ∈ [0, wε] be the point at which Fε is maximized, F ′ε(w0) = 0. For

w ≥ w0 such that Fε(w) ≥ F (0) = 1 ≥ F (w), so that the drift of the relational capital

rw − (a(Fε(w))− c(a(Fε(w)))) is positive, we have

(r + α + γ)Fε(w) = F ′ε(w) (rw − [a(Fε(w))− c(a(Fε(w)))])− (r + α)2

2σ2
Y F
′′
ε (w)

≤ − (r + α)2

2σ2
Y F
′′
ε (w)

,

(30)

−F ′′ε (w) ≤ (r + α)2

2σ2
Y (r + α + γ)

,

where the equality follows from the fact that F ′′ε (w) ≥ − r+α
σ2
Y ε

(otherwse the right hand

side would fall short of 1, and so the left hand side). Since wε ≤ wEF = 1/(8rC), for

C ∈
[
C,C

]
, it therefore follows that

Fε(w0) ≤ Fε(w0)− Fε(wε) + 1 ≤ 1

2

(r + α)2

2σ2
Y (r + α + γ)

(
1

8rC

)2

+ 1

=
(r + α)2

256σ2
Y (r + α + γ) r2C2 + 1.

The proof of the first part of the Theorem is analogous to the proof of Theorem 1.

The optimal policy function implied by (12) is given by

I∗ε (w) = − r + α

σ2
Y F
′′(w)

, if F ′′ε (w) ≥ −r + α

σ2
Y ε

(31)

I∗ε (w) = ε, if − 2
r + α

σ2
Y ε

< F ′′ε (w) < −r + α

σ2
Y ε

I∗ε (w) = 0. if F ′′ε (w) ≤ −2
r + α

σ2
Y ε

It is easy to establish that F ′′ε (0) = −2 r+α
σ2
Y ε

, since with any other value, the equation (12)

would be violated around zero. In what follows we establish that if there is w such that

F ′′ε (w) < −2 r+α
σ2
Y ε

, then F ′ε(w) is negative and of order ε−1/3. We claim that this is enough

to establish the proof of the Theorem. Indeed, we may define w∗ε as the first point such

that F ′′ε (w∗ε) = −2 r+α
σ2
Y ε

. Note that, crucially, the policy I∗ε is continuous and weakly above

ε over [0, w∗ε), and so with the constraint of I /∈ (0, ε) void. The existence of a local SSE

then follows from the proof of Lemma 2. The bound follows from concavity of Fε, and

10



the order of F ′ε(w
∗
ε).

Consider w such that F ′′ε (w) < −2 r+α
σ2
Y ε

. Given quadratic costs, we have

(a(Fε(w))− c(a(Fε(w))))′ =
1

C
(1/2− Fε(w))F ′ε(w),

for C ∈
[
C,C

]
. Thus, differentiating (12), we get53

F ′′ε (w) =
F ′ε(w)

(
α + γ + [a(Fε(w))− c(a(Fε(w)))]′

)
rw − a(Fε(w))− c(a(Fε(w)))

(32)

=
F ′ε(w)

(
α + γ + 1

C
(1/2− Fε(w))F ′ε(w)

)
rw − a(Fε(w))− c(a(Fε(w)))

≥ − F ′2ε (w)

2C|rw − a(Fε(w))− c(a(Fε(w)))|
, when F ′ε(w) ≤ 0

≥ − C1F
′2
ε (w)

C(rw − a(Fε(w))− c(a(Fε(w))))
, when F ′ε(w) ≥ 0

where C1 is the bound on Fε from Lemma 10. For an appropriate C2 > 0 this yields

F ′2ε (w)

|rw − a(Fε(w))− c(a(Fε(w)))|
≥ C2

ε
. (33)

On the other hand, equation (12) implies that

F ′ε(w) (rw − [a(Fε(w))− c(a(Fε(w)))]) = (r + α + γ)Fε(w) ≤ (r + α + γ)C1. (34)

Inequalities (33) and (34) imply that |rw − a(Fε(w)) − c(a(Fε(w)))| ≤ C3ε
1/3, with

C3 > 0. Since Fε (w) ≥ 1/2, in the case when F ′ε (w) ≥ 0 (so that the drift of relational

capital is positive), whereas Fε (w) ≥ limw→w∗ε Fε(w) = F (w∗ε) ≥ C4 > 0, in the case

when F ′ε (w) ≤ 0 (the equality follows from the boundary condition (11)) equation (12)

yields

|F ′ε (w)| = (r + α + γ)Fε (w)

|rw − a(Fε(w))− c(a(Fε(w)))|
≥ C5ε

−1/3. (35)

Since Fε is concave and bounded in [0, C1] , inequality (30) implies

w∗ε − w = O(ε1/3), when F ′ε < 0

w = O
(
ε1/3
)
. when F ′ε > 0

It is enough now to show that the case F ′ε(w) ≥ 0 is not possible. Note that since

w is small and rw − a(Fε(w)) − c(a(Fε(w))) positive, we have Fε(w) ≈ F (0) = 1. By

differentiating (32),

53Note that (12) implies F ′ε(w)× [rw − a(Fε(w))− c(a(Fε(w)))] ≥ 0.
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F ′′′ε (w) =

(
F ′ε(w)

rw − a(Fε(w))− c(a(Fε(w)))

)′ (
α + γ + (a(Fε(w))− c(a(Fε(w))))′

)
(36)

+
F ′ε(w)

rw − a(Fε(w))− c(a(Fε(w)))
(a(Fε(w))− c(a(Fε(w))))′′

>
F ′ε(w)

rw − a(Fε(w))− c(a(Fε(w)))
(a(Fε(w))− c(a(Fε(w))))′′

=sgn (a(Fε(w))− c(a(Fε(w))))′′ ,

where the inequality follows from the fact that F ′′ε (w) < 0 and

(rw − a(Fε(w))− c(a(Fε(w))))′ = r − 1

C
(1/2− Fε(w))F ′ε(w)

≈ r +
1

2C
F ′ε(w) > 0,

α + γ + (a(Fε(w))− c(a(Fε(w))))′ = α + γ +
1

C
(1/2− Fε(w))F ′ε(w)

≈ α + γ − 1

2C
F ′ε(w) < 0,

for C ∈
[
C,C

]
, when ε is small enough. Finally,

(a(Fε(w))− c(a(Fε(w))))′′ =

(
1

C
(1/2− Fε(w))F ′ε(w)

)′
(37)

=sgn (1/2− Fε(w))F ′′ε (w)− (F ′ε(w))
2

≈ −1

2
F ′′ε (w)− (F ′ε(w))

2

≈ 1

4C

(F ′ε(w))2

rw − a(Fε(w))− c(a(Fε(w)))
− (F ′ε(w))

2
> 0,

when ε is small enough, where the last line follows from (32). This establishes that

F ′′ε (w0) ≤ −2 r+α
σ2
Y ε

implies F ′′′ε (w0) > 0, and so the case F ′ε(w
0) ≥ 0 is not possible. This

establishes the proof of the Theorem.

Observe also that on [0, w′ε] we have the bounds

F ′′ε (w) ≥ 2
r + α

σ2
Y ε

, (38)

F ′ε(w) ≤ F ′ε (0) ≤ 1

8rC
× 2

r + α

σ2
Y ε

,

where the second line follows from wEF ≤ 1/8rC and F ′′ε (w) ≥ 2 r+α
σ2
Y ε

when F ′ε(w) ≥ 0.
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A.4 Proof of Theorem 3

Step 1. Fix ε > 0 and consider an ε−optimal local SSE {at, at}, together with the

processes {wt} , {Ft} , {It} and {Jt} that satisfy equations (9) (Proposition 1 and Theorem

2). In this step we show that as long as

Jt ≤
C (r + 2 (α + γ))

8 (r + α)
, ∀t (39)

then, for an appropriate X > 0 and any deviating strategy {ãt}, the relational capital at

any time τ ≥ 0 to the deviating agent is bounded above by

w̃τ (µ̃τ − µτ , wτ ) = wτ +
Fτ
r + α

(µ̃τ − µτ ) +X(µ̃τ − µτ )2. (40)

In the formula, wτ is the equilibrium level of relational capital, determined by (9), µ̃τ

are the correct beliefs, given strategies {ãt} and {at}, and µτ are the equilibrium beliefs,

given that both strategies are {at}, both determined by (2). Consequently, using the

bound with µ̃t = µt, the step establishes that local SSE strategies are globally incentive

compatible, as long as the bound (39) holds.

Fix a deviation strategy {ãt} and consider the process

vτ =

∫ τ

0

e−rs
(
ãt + at

2
− c(ãt)

)
dt+ e−rττ w̃(µ̃τ − µτ , wτ ),

where, from (2), the wedge process {µ̃t − µt} follows

d (µ̃t − µt) = (r + α) (ãt − at)dt− (α + γ) (µ̃t − µt) dt.

In order to establish that w̃τ bounds the relational capital under {ãt} and {at}, it is

enough to show that the process {vt} has negative drift. We have

e−rtdvt =

(
ãt + at

2
− c(ãt)

)
dt− r

(
wt +

Ft
r + α

(µ̃t − µt) +X(µ̃t − µt)2
)

+ (rWt − (at + c(at)))dt+ It × (dYt − µtdt)

+
µ̃t − µt
r + α

((r + α + γ)Ft − (r + α)Itdt+ Jt × (dYt − µtdt))

+

(
Ft

r + α
+ 2X(µ̃t − µt)

)
((r + α) (ãt − at)dt− (α + γ)(µ̃t − µt)dt) .

13



Given that the drift of dYt−µtdt is (µ̃t−µt)dt, the drift of the e−rtdvt process equals

ãt − at
2

+ c(at)− c(ãt) + Ft(ãt − at)

+ (µ̃t − µt)2
(

Jt
r + α

−X (r + 2 (α + γ))

)
+ (µ̃t − µt)(ãt − at)2X (r + α)

≤ ãt − at
2

+ c(at)− c(ãt) + Cat(ãt − at)

+ (µ̃t − µt)2
(

Jt
r + α

−X (r + 2 (α + γ))

)
+ (µ̃t − µt)(ãt − at)2X (r + α)

= −C
2

(at − ãt)2 + (µ̃t − µt)2
(

Jt
r + α

−X (r + 2 (α + γ))

)
+ (µ̃t − µt)(ãt − at)2X (r + α) ,

where we used that c(a) = 1
2
a+ C

2
a2, and Ft(ãt− at) ≤ Cat(ãt− at), with equality in the

case at < A.

Note that when the matrix[
−C

2
X (r + α)

X (r + α) Jt
r+α
−X (r + 2 (α + γ))

]
has a positive determinant, then the trace is negative, and the matrix is negative semidef-

inite, guaranteing negative drift. Since

max
X

{
−C

2
×
(

Jt
r + α

−X (r + 2 (α + γ))

)
−X2 (r + α)2

}
=

C

2 (r + α)

(
C (r + 2 (α + γ))

8 (r + α)
− Jt

)
,

it follows that, indeed, when Jt is bounded as in (39), then w̃τ defined in (40) bounds the

relational capital, for X that maximizes the above expression.

Step 2. Fix ε > 0 and consider an ε−optimal local SSE {at, at}. In this step we

show that when CσY is sufficiently large, then for any wt the sensitivity Jt of relational

incentives is bounded as in (39). Together with step 1, this will establish the proof of

Theorem 3.

Recall from Lemma 2 that

Jt = J(wt) = F ′ε(w)× I∗ε (w).

Let us bound I∗ε (w), in the case when F ′ε (w) > 0. (Since I∗ε ≥ 0, the bound (39) holds

in the case when F ′ε (w) ≤ 0.) Over the subset S ⊆ [0, wε) where F ′′ε (w) < − r+α
σ2
Y ε

, we

simply have I∗ε (w) = ε. Over the complement [0, wε)\S, where F ′′ε (w) ≥ − r+α
σ2
Y ε

, we have,
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I∗ε (w) = − r + α

σ2
Y F
′′
ε (w)

=
2

r + α
{(r + α + γ)Fε(w)− F ′ε(w) (rw − (a(Fε(w))− c(a(Fε(w)))))}

≤ 2

r + α

{
(r + α)2

256σ2
Y r

2C2
+ r + γ + α +

r + α

4σ2
YCrε

1

8C

}
,

=
r + α

128σ2
Y r

2C2
+

2(r + γ + α)

r + α
+

1

16σ2
YC

2rε
=: I#

where we use the bound (29) on Fε, from Lemma 10, the bound F ′ε ≤ r+α
4σ2
Y Crε

from (38),

and the lower bound of − (aEF − c (aEF )) = −1/8C on the drift of relational capital.

Condition (39) thus boils down to

Jt = F ′ε(w)× I∗ε (w) ≤ r + α

4σ2
YCrε

× (ε+ I#) ≤ C (r + 2 (α + γ))

8 (r + α)
,

or,

ε+
r + α

128σ2
Y r

2C2
+

2(r + γ + α)

r + α
+

1

16σ2
YC

2rε
≤ C2 (r + 2 (α + γ))

2 (r + α)2
σ2
Y rε, (41)

which is satisfied when CσY is large enough. This concludes the proof of the step, end

of the theorem.

A.5 Proofs for Section 4

Proof of Proposition 2. Part i) The proof strategy is to construct a a C2 function

E : [0, w]→ R that satisfies the differential inequality

(r + α + γ)E(w) ≤ E ′(w)× (rw − [a(E(w))− c(a(E(w)))])− (r + α)2

2σ2
YE
′′(w)

, (42)

exactly as in Lemma 2, together with the left boundary condition E (0) = 0 (achievable

by the Markov equilibrium), and the right boundary condition (16). The result then

follows from Lemma 2.

Given the quadratic cost of effort c(a) = a
2

+ C
2
a2, the flow payoffs (given interior

efforts) satisfy

a(E)− c(a(E)) =
E(w)

2C
(1− E(w)) ,

and also F ′(0) = 2Cr. We will construct a curve E over [0, w], with w = δ/r = 1
16Cr

,
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constant second derivative and with the right boundary condition

E(w) =
1

2
> F (w),

as well as

E ′ (w) =
(r + α + γ)E(w)

rw − E(w)
2C

(1− E(w))
=

1
2
(r + α + γ)

δ − 1
8C

= −4C(r + α + γ),

so that the first equation in (16) is satisfied at w; the second equation follows from

F (w) ∈
(
F (w), F (w)

)
.

The constant second derivative D is pinned down by

E (w) =

∫ w

0

E ′(x)dx =

∫ w

0

[E ′(w)−D (w − x)] dx

= E ′(w)× δ

r
− D

2

(
δ

r

)2

,

1

D
=

1

2

1

E ′(w)× δ
r
− E (w)

(
δ

r

)2

=
1

2

1

−1
4
(r + α + γ)× 1

r
− 1

2

(
δ

r

)2

= − 2

2 + r + α + γ

(
δ

r

)2

.

It follows that, for all w ∈ [0, w],

E(w) ≤ 1

2
+ 4C(r + α + γ)× δ

r
≤ r + α + γ

r
, (43)

|E ′(w)| ≤ E ′(0) ≤ |E ′ (w)|+ E (w)− 0

|E ′ (w)|
|D| = 4C(r + α + γ) +

2 + r + α + γ

r + α + γ
16Cr2,

rw − E(w)

2C
(1− E(w)) ≥ − 1

8C
,

(r + α + γ)E(w)− E ′(w)

(
rw − E(w)

2C
(1− E(w))

)
≤ (r + α + γ)2

r

+
r + α + γ

2
+

2 + r + α + γ

r + α + γ
2r2,

−(r + α)2

2σ2
YD

=
(r + α)2

2σ2
Y

2

2 + r + α + γ

(
1

16Cr

)2

≥ 2

512σ2
YC

2(2 + r + α + γ)
,

where we also assume that the bound A is high enough so that the efforts are interior.

The last two inequalities in (43) establish that inequality (42) is satisfied, and so

nontrivial local SSE exist, as long as

(r + α + γ)2

r
+
r + α + γ

2
+ 2r2

2 + r + α + γ

r + α + γ
≤ 2

512σ2
YC

2(2 + r + α + γ)
,
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or

(r+α+γ)
2 + r + α + γ

2

(
r + α + γ

r
+

1

2
+ 2 (2 + r + α + γ)

(
r

r + α + γ

)2
)
≤ 1

512σ2
YC

2
.

(44)

This establishes the existence of a nontrivial local SSE.

To verify the existence of fully (globally) incentive compatible nontrivial SSE, note

that the policy function I (w) equals zero at the extremes, and for any w ∈ (0, w) satisfies

I (w) ≥ −r + α

σ2
YD
≥ r + α

σ2
Y

2

2 + r + α + γ

(
1

16Cr

)2

≥ 1

256σ2
YC

2r
=: ε. (45)

The condition (41) for global incentive compatibility, in the proof of Theorem 3, given

(45), boils down to

1

256σ2
YC

2r
+

r + α

128σ2
Y r

2C2
+

2(r + γ + α)

r + α
+

256σ2
YC

2r

16σ2
YC

2r
≤ (r + 2 (α + γ))

512 (r + α)2
,

or

r + α + γ

r

1

256σ2
YC

2
+

(
r + α + γ

r

)2
1

128σ2
YC

2
+ 2(r + α + γ) + 16(r + α) ≤ 1

512
. (46)

For a given ratio r+α+γ
r

, inequalities (44) and (46) hold when, first, CσY is sufficiently

large and, second, r+α+γ is sufficiently small. This concludes the proof of the theorem.

Results do not depend of normalizing the marginal benefit of effort: The

proposition remains true when the effect of action is scaled up by X > 1, so that dµt =

X (r + α) (a1t + a2t )dt − αµtdt + σµdB
µ
t (for example, when the effect is independent of

r+α, we have X = (r+α)−1). We briefly comment here how the proof of the proposition

must be adjusted.

For a fixed X > 1 the Markov equilibrium action becomes aXM = X−1
2C

, and, given

relational incentives FX , the locally optimal action aX(FX) equals aXM + FX

C
. The

flow of relational capital (flow of equilibrium utility net of Markov equilibrium level)

is XaX(FX)− c(aX(FX)), which equals FX

2C

(
X − FX

)
; consequently, the HJB equation

generalizes from (10) in Theorem 1 to

(r + α+ γ)FX(w) = max
I

{
X(r + α)I + FX′(w)

FX(w)

2C
(X − F (w)) +

FX′′(w)σ2Y
2

I2
}

(47)

= FX′(w)
FX(w)

2C

(
X − FX(w)

)
− X2(r + α)2

2σ2Y F
X′′(w)

.
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For the new parametrization, the construction remains analogous as in the proposition,

with aXEF = Xw1
EF , wXEF = Xw1

EF , wX = Xw1, EX(wX) = XE1(w1), EX′(wX) =

E1′(w1), and EX′′(w) = 1
X
E1′′(w). The bounds (43) in the proof change to: EX(w) ≤

X × E1(1), |EX′(w)| = |E1′(w)|, and (rw − (2C−1)EX(w)(X − EX(w))) ≥
X × (rw − (2C−1)EX(w)(X − EX(w))). Consequently, all the terms in the inequality

(42) are bounded by the terms scaled up by X, and the inequality continues to hold.

Part ii) Fix w > 0. In the proof we show that if the constant in the statement of the

proposition is sufficiently high, then w∗ ≤ w.

Suppose that w∗ > w. Observe that for all w such that F ′(w) ≤ 0 we have

F (w) ≥ lim
s→w∗

F (s) = F (w∗) > F (w) ≥ 2Crw =: A, (48)

where the last inequality follows from F (0) = 0, F ′(0) = 2Cr, and F convex. Secondly,

recall from Theorem 1 that as w approaches w∗ from the left, then F ′(w) gets arbitrarily

high, and F ′′(w) arbitrarily low. Finally, note that for any w > 0 the drift of the relational

capital is uniformly bounded from below by

rw−(a(F (w))− c(a(F (w)))) > −[a(F (w))−c(a(F (w)))] ≥ −[aEF−cEF ] = − 1

8C
=: −B.

(49)

In the first part of the proof we establish that if the “discount factor” in the statement

of the result is sufficiently high, then the the value F (w#) of relational incentives at

the point w# such that F ′(w#) = 0 would be arbitrarily high as well. We lead it to

contradiction in the second part of the proof.

Fix w close to w∗, such that−F ′′(w) equals ε−1 > 0 sufficiently large, to be determined

later. Consider the differential equation

(r + α + γ)A = −G′(w)B − (r + α)2

2σ2
YG
′′(w)

, (50)

together with a boundary conditionG(w) = F (w), G′′(w) = F ′′(w), and solved for w ≤ w.

Let w## < w be such that G′
(
w##

)
= 0. We argue that

G′(w) > F ′(w), for all w ∈ [w##, w]. (51)

Indeed, note that F satisfies equation (10), related to (50), but with F (w) in place of

A, and rw − (a(F (w))− c(a(F (w)))), in place of −B. It follows from (48) and (49)

that (51) holds at w = w. Similarly, suppose w&, w# < w& < w, was the maxi-

mal point such that G′(w&) ≤ F ′
(
w&
)
. It follows that F (w&) > G(w&) and rw& −
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(
a(F (w&))− c(a(F (w&)))

)
> −B, and so G′′(w&) < F ′′(w&). This last inequality con-

tradicts maximality of w&.

Crucially, inequality (51) implies that

F (w#) > G(w##), (52)

for the maximal values of the respective functions, with F ′(w#) = 0 and G′(w##) = 0.

We now compute G(w##). The solution to the differential equation (51) takes the

form

G′(w) =

√
ε2 + 2c(w − w)− d

c
, G′′(w) = − 1√

ε2 + 2c(w − w)
,

for

d = 2

(
σY
r + α

)2

(r + α + γ)A, c = 2

(
σY
r + α

)2

B.

It follows that

w## = w − d2 − ε2

2c
,

G(w##) = G(w)−
∫ w

w##

G′(w)dw = G(w)−
∫ w

w##

√
ε2 + 2c(w − w)− d

c
dw

= G(w) +
d2 − ε2

2c

d

c
+

1

c

2

3

1

2c

[
ε2 + 2c(w − w)

]3/2∣∣∣w
w##

= G(w) +
d2 − ε2

2c

d

c
+

ε3

3c2
d2 − ε2

2c
− 1

3c2
(
d2 − ε2

)3/2 ≥ d3

2c2
− d3

3c2
=

1

6

d3

c2
,

where the last inequality holds when ε is chosen small enough.

Substituting for d, c, and B in the above bound for G(w##), and using (52) we have

F (w#) ≥ 64

3

(
σY
r + α

)2

(r + α + γ)3CA3 =: D. (53)

We now derive a contradiction from (53), when D is large enough. Let w◦ ∈ (w#, w)

be such that F (w◦) = 1
2
D. Note that when, as we shall suppose,

1

2
D > 1 = F (0) ≥ F (w), for all w ∈ [0, wEF ] ,

then for all w ∈ [w#, w◦] the drift of relational capital rw − (a(F (w))− c(a(F (w)))) is

positive, and so

(r + α + γ)F (w) < − (r + α)2

2σ2
Y F
′′(w)

, w ∈ [w#, w◦]
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or

− F ′′(w) <
(r + α)2

2σ2
Y (r + α + γ)F (w)

≤ (r + α)2

σ2
Y (r + α + γ)D

, w ∈ [w#, w◦]. (54)

Summarizing, when D > 2 we have

1

2
D = F (w#)− F (w◦) <

(r + α)2

σ2
Y (r + α + γ)D

(w◦ − w#)2

<
(r + α)2

σ2
Y (r + α + γ)D

(
1

8Cr

)2

,

where the first equality follows from the definition of w◦, the first inequality follows from

F ′(w#) = 0 and the bound (54), and the lest bound follows from w◦−w# < wEF−0 = 1
8Cr

.

Rearranging the last inequality, and substituting for D we have the necessary condition

1 > 32D2C2r2
σ2
Y (r + α + γ)

(r + α)2
=

64326

18
C10r8

(
σY
r + α

)6

(r + α + γ)7w6, (55)

which establishes contradiction, when r + α + γ is sufficiently large. This concludes the

proof of the proposition.

Results do not depend of normalizing the marginal benefit of effort: As in

the case of part i), part ii) of the proposition remains true when the effect of action is

scaled up by X < 1, so that dµt = X (r + α) (a1t + a2t )dt− αµtdt + σµdB
µ
t (for example,

when the effect is independent of r + α, we have X = (r + α)−1). We briefly comment

here how the proof of the proposition must be adjusted.

Fix X < 1; the bounds in the proposition change to AX = 1
X
A1, BX = X × B1, and

the last term in the equation (50) is scaled up by X2 (see (47)). Consequently, dX =
1
X3d

1, cX = 1
X
× c1, GX(wX##) = 1

X7G
1(w1##). This results in in bounds −FX′′(w) ≤

−F 1′′(w) × X9 and, rearranging terms, the right-hand side in the necessary inequality

(55) is multiplied by X18 < 1.

Proof of Proposition 3. Part i) Suppose γ = σµ = 0. We show that the supremum

w∗ε of relational capitals achievable in the ε−optimal local SSE is increasing in σ−1Y , for

every ε > 0. Note that decreasing σY changes equation (14) in Proposition 2 only

by decreasing the last term. This means that if a pair of functions (F, I) satisfies the

conditions of Lemma 2 for some interval [w,w] and a given σY , then for any σ′Y with

0 < σ′Y < σY there is a function I ≥ I such that the pair
(
F, I

)
satisfies the conditions

of Lemma 2 for σ′Y . Applying the result to the pair (Fε, I
∗
ε ) on the interval [0, wε] as in
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the proof of Theorem 2, for any ε > 0, establishes the proof.

Part ii) Fix w > 0. Proof of part ii) of Proposition 2 establishes that a necessary

condition for w∗ ≥ w is inequality (55), reproduced below:

1 > 32D2C2r2
σ2
Y (r + α + γ)

(r + α)2
=

64326

18
C10r8

(
σY
r + α

)6

(r + α + γ)7w6. (56)

Recall also that, when σY is close to zero, γ is of order σ−1Y (see equation (3)). Substituting,

the right hand side of (55) is of order σ−1Y , when σY is close to zero. This establishes that

w∗ ≤ w, when σY is sufficiently small.

Part iii). As a preliminary step, we show that a symmetric strategy profile {at, at}
is an SSE with associated relational capital process {wt} if and only if there is an L2

process {It} such that

dwt = (rwt − (at − c(at))) dt+ It × (dµt − [(r + α) 2at − αµt] dt) + dMw
t , (57)

where at = a((r + α) It), and {Mw
t } is a martingale orthogonal to {Yt}, and the transver-

sality condition E [e−rtwt]→t→∞ 0 holds.

The proof is identical to the first part of the proof of Lemma 1: since the process{
µt −

∫ t
0

[(r + α) 2as − αµs] ds
}

, scaled by σµ, is a Brownian Motion, it follows from

Proposition 3.4.15 in Karatzas (1991) that a process {wt} is the relational capital process

associated with {at, at}, defined in (6), precisely when it can be represented as in (57),

for some L2 process {It} and a martingale {Mw
t } orthogonal to {µt}.

As regards incentive compatibility, fix an alternative strategy {ãt} for player i and

note that the relational capital satisfies

E{ãt,at}τ

[∫ ∞
τ

e−r(t−τ)
(
ãt + at

2
− c(ãt)

)
dt

]
= E{ãt,at}τ

[∫ ∞
τ

e−r(t−τ)
(
ãt + at

2
− c(ãt)

)
dt+ wτ +

∫ ∞
τ

d
(
e−rtwt

)]
= wτ + E{ãt,at}τ

[∫ ∞
τ

e−r(t−τ)
(
ãt + at

2
− c(ãt)

)
dt+

∫ ∞
τ

e−rt (dwt − rwtdt)
]

= wτ + E{ãt,at}τ

[∫ ∞
τ

e−r(t−τ)
(
ãt − at

2
− c(ãt) + c (at) + It (r + α) (ãt − at)

)
dt

]
,

where the first equality follows from E{ã
i
t,a
−i
t }

τ

[
e−r(t−τ)wt

]
→ 0, as t → ∞ (given that

efforts are bounded), and the last one follows from E{ãt,at}τ [dµt − [(r + α) 2at − αµt] dt] =
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(r + α)E{ãt,at}τ [ãt − at] . Since continuation value and relational capital differ by a con-

stant, it follows from this representation and convexity of costs that there exists no

profitable deviating strategy for partner i if and only if her effort process satisfies at =

a((r + α) It).

We are now ready to establish part iii) of the proposition. From representation (57)

it follows that when wt ≥ ε > 0, then either the volatility satisfies Itσµ ≥ δ > 0, in order

to incentivize a strictly positive, more efficient effort, or the drift satisfies E{a
1
t ,a

2
t}

τ [dwt] ≥
δ > 0, to satisfy promise keeping (where δ depends on ε). It follows that if w0 > 0

then the process {wt} escapes to infinity with positive probability, which, given bounded

efforts, yields contradiction.

Proof of Proposition 4. Fix σµ > σ#
µ ≥ 0; we show that, for any ε > 0,

the corresponding suprema of relational capitals achievable in the ε−optimal local SSE

satisfy w#∗
ε ≥ w∗ε . The proof is very related to the proof of Proposition 3. One extra

complication is that now, changing the noise of the fundamentals also affects the boundary

conditions (16) in Lemma 2, via the effect on γ.

Specifically, note that decreasing σµ changes equation (14) in Proposition 2 only by

decreasing γ in the first term. Let γ# ≤ γ be the two corresponding gain parameters,

and let wε be the relational capital achievable in a ε−optimal local SSE with σµ, as in

the proof of Theorem 2, together with a pair of functions (Fε, I
∗
ε ) defined on [0, wε]. Let(

F#
ε , I

#∗
ε

)
extend the functions (Fε, I

∗
ε ) to the right by letting F#′′

ε (w) = F#′′
ε (wε) and

I#∗ε (w) = I#∗ε (wε), for w > wε, and let w#
ε be the first argument such that the boundary

condition (16) is satisfied. The existence of such w#
ε follows from the fact that at wε

condition (16) is violated, with the left-hand-side too small (due to γ# ≤ γ), and when w

increases and F#
ε decreases and approaches from above the value F (w) at which the drift

dies out, the left-hand-side is bounded away from zero, and the right-hand-side converges

to zero. It follows that for small σ#
µ and γ#, the pair

(
F#
ε , I

#∗
ε

)
satisfies conditions of

Lemma 2. This establishes the proof.

A.6 Proof of Theorem 4

The concavity of G in continuation value follows, as usual, from the availability of public

randomization. Below, first, in Lemma 11 we derive the continuation value and marginal

benefit of fundamentals processes in local SSE, analogously as in Lemma 1. Then, Lemma
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12 establishes that at any point where G is sufficiently smooth, the inequality version of

(21) must hold, with the left hand side greater than the right hand side. Otherwise,

intuitively, function G can be locally increased and still satisfy the inequality, despite

the dependence of the right-hand-side on the value G; the function provides a recipe to

construct a local SSE process, using the Ito formula (compare Lemma 2). Conversely,

Lemma 13 establishes the reverse weak inequality, using an “escape argument” similar as

in Lemma 3. Lemmas 12 and 13 hence establish the proof of the Theorem.

Lemma 11 A symmetric strategy profile {at, at} with bounded processes of continuation

value and marginal benefit of fundamentals processes {Wt} and {Gt} is a local SSE if and

only if there are L2 processes {It}, {Jt} such that

dWt = (rWt − f(µt, at)) dt+ It × (dYt − µtdt) + dMW
t , (58)

dGt = (r − gµ(µt, 2at))Gtdt− (It + fµ(µ, at))dt+ Jt × (dYt − µtdt) + dMG
t ,

and actions satisfy at = a(Gt), where {MW
t } and {MG

t } are martingales orthogonal to

{Yt}.

Proof. The proof for the process of continuation values is entirely analogous to the

first part of the proof of Lemma 1, based on Proposition 3.4.14 in Karatzas (1991), and

hence is omitted here. The proof for the process of marginal benefit of fundamentals is

analogous too, with the following changes.

First, the generic formula (22) for the relative density under fundamentals shifted

from µτ to µτ + ε remains the same,

Γεt = e
− 1

2

∫ t
τ

(µdevs −µs)
2

σ2
Y

ds+
∫ t
τ
µdevs −µs

σY

dYs−µsds
σY ,

for t > τ , where {µs}s≥τ and {µdevs }s≥τ are the associated paths of relational capital that

satisfy (19), with µdevs − µs ≈ εe
∫ s
τ gµ(µv ,2av)dv, for small ε and s > τ . The continuation

value at time τ thus changes to

E{at,at}τ

[∫ ∞
τ

e−r(t−τ)Γεtf(µdevt , at)dt

]
,
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and the marginal benefit of fundamentals satisfies

Gτ =
∂

∂ε
E{at,at}τ

[∫ ∞
τ

e−r(t−τ)Γεtf(µdevt , at)dt

]
(59)

= E{at,at}τ

[∫ ∞
τ

e−r(t−τ)
(
e
∫ t
τ gµ(µs,2as)dsfµ(µt, at) + f(µt, at)

∫ t

τ

e
∫ s
τ gµ(µv ,2av)dv

dYs − µsds
σ2
Y

)
dt

]
= E{at,at}τ

[∫ ∞
τ

e
∫ t
τ (gµ(µs,2as)−r)ds

(
fµ(µt, at)dt+

(∫ ∞
t

e−r(s−t)f(µs, as)ds

)
dYt − µtdt

σ2
Y

)]
.

Proceeding as in the proof of Lemma 1, with f(µs, as) replacing as−c(as) and
∫ t
τ
(gµ(µs, 2as)−

r)ds replacing −(r + α + γ)(t− τ), we establish that

Gτ − E{at,at}τ

[∫ ∞
τ

e
∫ t
τ (gµ(µs,2as)−r)dsfµ(µt, at)dt

]
= E{at,at}τ

[∫ ∞
τ

e
∫ t
τ (gµ(µs,2as)−r)dsIt

]
.

Using Proposition 3.4.14 from Karatzas (1991) one more time, the marginal benefit of

fundamentals satisfies the above equation precisely when it can be represented as in 58.

Lemma 12 At any point where G is twice continuously differentiable, the left-hand-side

of equation (21) is weakly greater than the right-hand-side.

Proof. Suppose instead that there is a point (W ∗, µ∗) at which G is twice continuously

differentiable and the left-hand-side of (21) is strictly lower than the right-hand side.

From twice continuous differentiability of G and given that the functions fµ, f, and g are

continuous, there exists a smooth function h defined over a neighborhood S of (W ∗, µ∗)

such that i) on S the left-hand-side of (21) is strictly lower than the right-hand side, when

applied to G+ h, ii) h(W ∗, µ∗) > 0, iii) h is strictly concave in W , and iv) h = 0 on ∂S.

Let G := G+ h.

Let (W0, µ0) = (W ∗, µ∗); we first construct the process {Wt, µt} that satisfies the first

equations in (19) and (58) as follows. Let τ be the stopping time when {Wt, µt} hits ∂S.

For any (W,µ) ∈ S let function I(W,µ) be such that

(r − gµ(µ, 2a(G)))×G(W,µ) = (60)

I(W,µ) + fµ(µ, a(G)) +GW

(
rW − f(µ, a(G))

)
+Gµg(µ, 2a(G)) +

GWW

2
σ2
Y I

2(W,µ),

The existence of such I(W,µ) follows from properties i) and iii) of h. For times t ≤ τ

let at = a(G), µt be the solution to (19), and Wt be the weak solution to (58), with

It = I(Wt, µt) and {MW
t } = 0. The existence of the weak solution follows from the
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continuity of actions and volatility I (see Karatzas (1991) 5.4.22). For times t ≥ τ ,

define the processes based off the associated local SSU that gives rise to (Wτ , µτ ) ∈ ∂S.

It follows from the Ito formula that before τ the process Gt = G(Wt, µt) follows (58),

with {MG
t } = 0 and Jt = GW (Wt, µt) × It. It follows therefore from Lemma 11 that

there is an associated local SSE with marginal benefit of fundamentals at t = 0 equal to

G(W ∗, µ∗) > G(W ∗, µ∗), establishing contradiction.

Lemma 13 At any point where G is twice continuously differentiable, the left-hand-side

of equation (21) is weakly lower than the right-hand-side.

Proof. The proof is closely related to that of Lemma 3. Suppose, by way of contradiction,

that there is a point (W ∗, µ∗) at which G is twice continuously differentiable and the left-

hand-side of (21) minus the right-hand side is at least 2λ > 0. From twice continuous

differentiability of G and given that the functions fµ, f, and g are continuous, there exists

a smooth function h defined over a neighborhood S of (W ∗, µ∗) such that i) on S the

left-hand-side of (21) minus the right-hand side is at least λ > 0, when applied to G− h,

ii) h > 0 on intS, iii) h is strictly convex on S, and iv) h = 0 on ∂S. Let δ > 0 be an

upper bound on h on S; we may assume that δ is arbitrarily small. Let G := G− h.

Pick a local SSE that gives rise to (W ∗, µ∗) and the marginal benefit of fundamentals

above G(W ∗, µ∗), at time zero, and let {Gt,Wt, µt, It} be the processes this local SSE gives

rise to (see Proposition 11). From Ito’s lemma, the process D(Wt, µt, Gt) = Gt−G(Wt, µt)

satisfies

E [dD(Wt, µt, Gt)]

dt
= (r − gµ(µt, a(Gt)))Gt − (It + fµ(µt, a(Gt)))−GW (Wt, µt)(rWt − f(µt, a(Gt)))

−Gµ(Wt, µt)g(µt, 2a(Gt))−
GWW (Wt, µt)

[
σ2
Y I

2
t + d

〈
MW

t

〉]
2

≥ (r − gµ(µt, a(Gt)))Gt − (It + fµ(µt, a(Gt)))−GW (Wt, µt)(rWt − f(µt, a(Gt)))

−Gµ(Wt, µt)g(µt, 2a(Gt))−
GWW (Wt, µt)

[
σ2
Y I

2
t + d

〈
MW

t

〉]
2

− λ

2

≥ (r − gµ(µt, a(Gt))) (Gt −G(Wt, µt)) + λ− λ

2
> E ×D(Wt, µt, Gt),

where E := inf{r − gµ} > 0, the first inequality holds as long as δ is sufficiently small,

and the second inequality follows from properties i) and iii) of h. It follows as in the proof

of Proposition 3 that D(Wt, µt, Gt) must exceed δ with positive probability, establishing

contradiction.
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